Show simple item record

Gain dynamics and ultrafast spectral hole burning in In(Ga)As self-organized quantum dots

dc.contributor.authorKim, K.en_US
dc.contributor.authorUrayama, J.en_US
dc.contributor.authorNorris, Theodore B.en_US
dc.contributor.authorSingh, J.en_US
dc.contributor.authorPhillips, J.en_US
dc.contributor.authorBhattacharya, Pallab K.en_US
dc.date.accessioned2010-05-06T21:32:31Z
dc.date.available2010-05-06T21:32:31Z
dc.date.issued2002-07-22en_US
dc.identifier.citationKim, K.; Urayama, J.; Norris, T. B.; Singh, J.; Phillips, J.; Bhattacharya, P. (2002). "Gain dynamics and ultrafast spectral hole burning in In(Ga)As self-organized quantum dots." Applied Physics Letters 81(4): 670-672. <http://hdl.handle.net/2027.42/70041>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70041
dc.description.abstractUsing a femtosecond three-pulse pump-probe technique, we investigated spectral hole-burning and gain recovery dynamics in self-organized In(Ga)As quantum dots. The spectral hole dynamics are qualitatively different from those observed in quantum wells, and allow us to distinguish unambiguously the gain recovery due to intradot relaxation and that due to carrier capture. The gain recovery due to carrier–carrier scattering-dominated intradot relaxation is very fast ( ∼ 130 fs),(∼130fs), indicating that this is not the factor limiting the bandwidth of directly modulated quantum dot lasers. © 2002 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent54172 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleGain dynamics and ultrafast spectral hole burning in In(Ga)As self-organized quantum dotsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCenter for Ultrafast Optical Science, Department of Electrical Engineering and Computer Science, The University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099en_US
dc.contributor.affiliationumSolid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109-2122en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70041/2/APPLAB-81-4-670-1.pdf
dc.identifier.doi10.1063/1.1493665en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceD. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1998).en_US
dc.identifier.citedreferenceY. Arakawa and H. Sakaki, Appl. Phys. Lett. APPLAB40, 939 (1982).en_US
dc.identifier.citedreferenceY. Arakawa and A. Yariv, IEEE J. Quantum Electron. IEJQA722, 1887 (1986).en_US
dc.identifier.citedreferenceK. Kamath, J. Phillips, H. Jiang, J. Singh, and P. Bhattacharya, Appl. Phys. Lett. APPLAB70, 2952 (1997); P. Bhattacharya, K. K. Kamath, J. Singh, D. Klotzkin, J. Phillips, H. Jiang, N. Chervela, T. B. Norris, T. Sosnowski, J. Laskar, and M. R. Murty, IEEE Trans. Electron Devices IETDAI46, 871 (1999).en_US
dc.identifier.citedreferenceJ. Urayama, T. B. Norris, J. Singh, and P. Bhattacharya, Phys. Rev. Lett. PRLTAO86, 4930 (2001).en_US
dc.identifier.citedreferenceT. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, Phys. Rev. B PRBMDO57, R9423 (1998).en_US
dc.identifier.citedreferenceP. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, IEEE Photonics Technol. Lett. IPTLEL12, 594 (2000); T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, IEEE J. Quantum Electron. IEJQA737, 1059 (2001).en_US
dc.identifier.citedreferenceH. Jiang and J. Singh, Phys. Rev. B PRBMDO56, 4696 (1997).en_US
dc.identifier.citedreferenceAt very low density, the n = 2n=2 absorption peak appears near 920 nm. When >1>1 e–h pair per dot is injected, there is a redshift in the n = 2n=2 DT peak due to Coulomb many-body interactions.en_US
dc.identifier.citedreferenceD. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, J. Appl. Phys. JAPIAU60, 754 (1986).en_US
dc.identifier.citedreferenceT. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mørk, IEEE Photonics Technol. Lett. IPTLEL13, 541 (2001).en_US
dc.identifier.citedreferenceC. Y. Sung, T. B. Norris, Y. Lam, J. Singh, X. K. Zhang, and P. Bhattacharya, Conference on Lasers and Electro-Optics, Anaheim, CA, 2–7 June 1996 (IEEE, New York, 1996), CMH6.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.