Show simple item record

Nanodomains of pyrochlore formed by Ti ion implantation in yttria-stabilized zirconia

dc.contributor.authorZhu, S.en_US
dc.contributor.authorZu, X. T.en_US
dc.contributor.authorWang, L. M.en_US
dc.contributor.authorEwing, Rodney C.en_US
dc.date.accessioned2010-05-06T21:35:24Z
dc.date.available2010-05-06T21:35:24Z
dc.date.issued2002-06-10en_US
dc.identifier.citationZhu, S.; Zu, X. T.; Wang, L. M.; Ewing, R. C. (2002). "Nanodomains of pyrochlore formed by Ti ion implantation in yttria-stabilized zirconia." Applied Physics Letters 80(23): 4327-4329. <http://hdl.handle.net/2027.42/70072>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70072
dc.description.abstractThe microstructural evolution of a single crystal of yttria-stabilized zirconia (YSZ) implanted with Ti has been studied by cross-sectional transmission electron microscopy (TEM). The implantation of 180 keV Ti ions to a dose of 1×1017 ions/cm21×1017ions/cm2 was completed at room temperature. After annealing at 1100 °C in an Ar atmosphere for 2 h, a phase transition from the fluorite structure of ZrO2ZrO2 to an isometric pyrochlore structure-type, A2B2O7,A2B2O7, occurred due to cation ordering. High-resolution TEM revealed nanodomains of pyrochlore, Y2(TixZr1−x)2O7,Y2(TixZr1−x)2O7, with a ≅ 10.24±0.05 Å.a≅10.24±0.05Å. The nanodomains of the pyrochlore phase, embedded within the YSZ fluorite substrate, occurred in a depth range from 45 to 105 nm below the surface, which corresponds to Ti concentrations from ∼10 to ∼15 at. %. The nanoscale pyrochlore precipitates and the YSZ matrix have a completely coherent orientation. © 2002 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent205476 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleNanodomains of pyrochlore formed by Ti ion implantation in yttria-stabilized zirconiaen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70072/2/APPLAB-80-23-4327-1.pdf
dc.identifier.doi10.1063/1.1482784en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceV. M. Oversby, C. C. McPheeters, C. Degueldre, and J.-M. Paratte, J. Nucl. Mater. JNUMAM245, 17 (1997).en_US
dc.identifier.citedreferenceL. M. Wang, S. X. Wang, and R. C. Ewing, Philos. Mag. Lett. PMLEEG80, 341 (2000).en_US
dc.identifier.citedreferenceR. C. Ewing, W. J. Weber, and W. Lutze, in Disposal of Weapon Plutonium, edited by E. R. Merz and C. E. Walter (Kluwer Academic, Boston, 1996), pp. 65–83.en_US
dc.identifier.citedreferenceS. X. Wang, L. M. Wang, R. C. Ewing, G. S. Was, and G. R. Lumpkin, Nucl. Instrum. Methods Phys. Res. B NIMBEU148, 704 (1999).en_US
dc.identifier.citedreferenceA. M. Azad, S. Larose, and S. A. Akbar, J. Mater. Sci. JMTSAS29, 4135 (1994).en_US
dc.identifier.citedreferenceM. A. Subramanian, G. Aravamudan, and G. V. Subba Rao, Prog. Solid State Chem. PSSTAW15, 55 (1983).en_US
dc.identifier.citedreferenceB. C. Chakoumakos, J. Solid State Chem. JSSCBI53, 120 (1984).en_US
dc.identifier.citedreferenceS. X. Wang, B. D. Begg, L. M. Wang, R. C. Ewing, W. J. Weber, and K. V. Govidan Kutty, J. Mater. Res. JMREEE14, 4470 (1999).en_US
dc.identifier.citedreferenceJ. Lian, L. M. Wang, S. X. Wang, J. Chen, L. A. Boatner, and R. C. Ewing, Phys. Rev. Lett. PRLTAO8714, 5901 (2001).en_US
dc.identifier.citedreferenceK. L. Smith, N. J. Zaluzec, and G. R. Lumpkin, J. Nucl. Mater. JNUMAM250, 36 (1997).en_US
dc.identifier.citedreferenceB. D. Begg, N. J. Hess, D. E. McCready, S. Thevuthasan, and W. J. Weber, J. Nucl. Mater. JNUMAM289, 188 (2001).en_US
dc.identifier.citedreferenceJ. F. Zirgler, The Stopping and Range of Ions in Matter IBM-Research, Yorktown, NY, 2000.en_US
dc.identifier.citedreferenceS. J. Zinkle and C. Kinoshita, J. Nucl. Mater. JNUMAM251, 200 (1997).en_US
dc.identifier.citedreferenceY. Tabira, R. L. Withers, J. C. Barry, and L. Elcoro, J. Solid State Chem. JSSCBI159, 121 (2001).en_US
dc.identifier.citedreferenceM. Nastasi and J. W. Mayer, Mater. Sci. Rep. MSREEL6, 1 (1991).en_US
dc.identifier.citedreferenceM. T. Robinson, J. Nucl. Mater. JNUMAM216, 1 (1994).en_US
dc.identifier.citedreferenceR. D. Shannon and C. T. Prewitt, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCARB25, 9256 (1969).en_US
dc.identifier.citedreferenceM. Glerup, O. F. Nielsen, and F. W. Poulsen, J. Solid State Chem. JSSCBI160, 25 (2000).en_US
dc.identifier.citedreferenceL. S. M. Traqueia, T. Pagnier, and F. M. B. Marques, J. Eur. Ceram. Soc. JECSER17, 1019 (1997).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.