Show simple item record

Laser‐ablation‐assisted‐plasma discharges of aluminum in a transverse‐magnetic field

dc.contributor.authorLash, J. S.en_US
dc.contributor.authorGilgenbach, Ronald M.en_US
dc.contributor.authorChing, Chi Hongen_US
dc.date.accessioned2010-05-06T21:35:41Z
dc.date.available2010-05-06T21:35:41Z
dc.date.issued1994-08-01en_US
dc.identifier.citationLash, J. S.; Gilgenbach, R. M.; Ching, C. H. (1994). "Laser‐ablation‐assisted‐plasma discharges of aluminum in a transverse‐magnetic field." Applied Physics Letters 65(5): 531-533. <http://hdl.handle.net/2027.42/70075>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70075
dc.description.abstractLaser‐ablation‐assisted‐plasma discharges (LAAPD) have been used to enhance the ionization of laser ablated aluminum metal. Ablation is accomplished by focusing a KrF excimer laser (248 nm, 40 ns, ≤0.4 J) on a solid aluminum target with a fluence of 4 J/cm2. Peak plasma discharge voltage is 1–4 kV and peak plasma current is 0.2–1 kA, while peak power is 0.1–1 MW. Gated emission spectroscopy is used to determine the charge states and the electronic temperatures within the plasma discharge. With unmagnetized discharge parameters of 3 kV and 760 A, the observed light emission is dominated by transitions from Al2+ ions indicating nearly complete ionization of the plume. From the emission spectra intensities, an Al2+ electronic temperature of 3.3 eV is determined. Emission spectra from unmagnetized LAAPD of 1.2 kV and 280 A show no visible Al2+ ion transitions indicating cooler plasma and a lower ionization state. Introducing a 620 G transverse magnetic field (at 1.2 kV, 280 A) enhances the ionization due to the increased electron confinement and leads to the observance of the Al2+ lines as seen with discharges of 3 kV and 760 A.en_US
dc.format.extent3102 bytes
dc.format.extent411263 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleLaser‐ablation‐assisted‐plasma discharges of aluminum in a transverse‐magnetic fielden_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumIntense Energy Beam Interaction Laboratory, Nuclear Engineering Department, The University of Michigan, Ann Arbor, Michigan 48109‐2104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70075/2/APPLAB-65-5-531-1.pdf
dc.identifier.doi10.1063/1.112288en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceG. L. Doll and J. A. Sell, Phys. Rev. B 43, 6816 (1991).en_US
dc.identifier.citedreferenceR. K. Singh, J. Narayan, A. K. Singh, and J. Krishnaswamy, Appl. Phys. Lett. 54, 2271 (1989).en_US
dc.identifier.citedreferenceL. Ganapathi, S. Giles, R. Rao, J. P. Zheng, and H. S. Kwok, Appl. Phys. Lett. 63, 2552 (1993).en_US
dc.identifier.citedreferenceA. N. Zhirikin, V. N. Bagratashivili, O. V. Boyarkin, and V. N. Burimov, Laser Radiation Photo-Physics, edited by B. Braren and M. N. Libenson (SPIE, Bellingham, WA), Vol. 1856, p. 92 (1993).en_US
dc.identifier.citedreferenceQ. Y. Ying, D. T. Shaw, and H. S. Kwok, Appl. Phys. Lett. 53, 1762 (1988).en_US
dc.identifier.citedreferenceR. A. Lindley, R. M. Gilgenbach, and C. H. Ching, Appl. Phys. Lett. 63, 888 (1993).en_US
dc.identifier.citedreferenceR. M. Gilgenbach, C. H. Ching, J. S. Lash, and R. A. Lindley, Phys. Plasmas 1, 1619 (1994).en_US
dc.identifier.citedreferenceR. W. Dreyfus, J. Appl. Phys. 69, 1721 (1991).en_US
dc.identifier.citedreferenceJ. T. Dickinson (private communication).en_US
dc.identifier.citedreferenceP. E. Dyer, L. Dirnberger, S. R. Farrar, and P. H. Key, Proceedings of the Second International Conference on Laser Ablation (AIP, New York, 1993).en_US
dc.identifier.citedreferenceC. B. Collins, F. Davanloo, E. M. Jeungeman, W. S. Osborn, and D. R. Jander, Appl. Phys. Lett. 54, 216 (1989).en_US
dc.identifier.citedreferenceJ. Krishnaswamy, A. Rengan, J. Narayan, K. Vedam, and C. J. McHargue, Appl. Phys. Lett. 54, 2455 (1989).en_US
dc.identifier.citedreferenceR. M. Gilgenbach, O. E. Ulrich, and L. D. Horton, Rev. Sci. Instrum. 54, 109 (1983); M. L. Brake, R. M. Gilgenbach, L. D. Horton, and J. E. Tucker, Plasma Chemistry and Plasma Proc. 3, 367 (1983).en_US
dc.identifier.citedreferenceD. B. Geohegan, Appl. Phys. Lett. 62, 1463 (1993).en_US
dc.identifier.citedreferenceM. L. Brake, J. Meachum, R. M. Gilgenbach, and W. Thornhill, IEEE Trans. Plasma Sci. PS-15, 73 (1987).en_US
dc.identifier.citedreferenceR. Poprawe, M. Wehner, G. Brown, and G. Herziger, in High Power Lasers edited by E. W. Kreutz, A. Quenzer, and D. Schuocker (SPIE, Bellingham, WA, 1987), Vol. 801, p. 191.en_US
dc.identifier.citedreferenceH. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).en_US
dc.identifier.citedreferenceW. L. Wiese, M. W. Smith, and B. M. Miles, Atomic Transition Probabilities, Vol. II: Sodium Through Calcium (National Bureau of Standards, Washington, 1969).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.