Show simple item record

Microstructure and crystal defects in epitaxial ZnOZnO film grown on GaGa modified (0001) sapphire surface

dc.contributor.authorSun, H. P.en_US
dc.contributor.authorPan, Xiaoqingen_US
dc.contributor.authorDu, X. L.en_US
dc.contributor.authorMei, Z. X.en_US
dc.contributor.authorZeng, Z. Q.en_US
dc.contributor.authorXue, Q. K.en_US
dc.date.accessioned2010-05-06T21:44:36Z
dc.date.available2010-05-06T21:44:36Z
dc.date.issued2004-11-08en_US
dc.identifier.citationSun, H. P.; Pan, X. Q.; Du, X. L.; Mei, Z. X.; Zeng, Z. Q.; Xue, Q. K. (2004). "Microstructure and crystal defects in epitaxial ZnOZnO film grown on GaGa modified (0001) sapphire surface." Applied Physics Letters 85(19): 4385-4387. <http://hdl.handle.net/2027.42/70171>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70171
dc.description.abstractSurface modification of sapphire (0001) by GaGa can eliminate multiple rotation domains in ZnOZnO films. The existence of GaGa at ZnOZnO∕sapphire interface was confirmed by x-ray energy dispersive spectroscopy in a transmission electron microscope. Atomic detail of mismatch dislocations at interface was imaged by high resolution transmission electron microscopy. Inside the ZnOZnO film, there is a high density of stacking fault. Both pure gliding of ZnO (0001)ZnO (0001) plane and condensation of vacancies or interstatials are possible mechanisms to generate the stacking fault.en_US
dc.format.extent3102 bytes
dc.format.extent446809 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleMicrostructure and crystal defects in epitaxial ZnOZnO film grown on GaGa modified (0001) sapphire surfaceen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationotherState Key Laboratory for Surface Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100081, People’s Republic of Chinaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70171/2/APPLAB-85-19-4385-1.pdf
dc.identifier.doi10.1063/1.1811393en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceY. Chen, D. Bagnall, and T. Yao, Mater. Sci. Eng., B 75, 190 (2000).en_US
dc.identifier.citedreferenceM. Kawasaki, A. Ohtomo, I. Ohkubo, H. Koinuma, Z. K. Tang, P. Yu, G. K. L. Wong, B. P. Zhang, and Y. Segawa, Mater. Sci. Eng., B 56, 239 (1999).en_US
dc.identifier.citedreferenceD. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).en_US
dc.identifier.citedreferenceM. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).en_US
dc.identifier.citedreferenceA. Tiwari, M. Park, C. Jin, H. Wang, D. Kumar, and J. Narayan, J. Mater. Res. 17, 2480 (2002).en_US
dc.identifier.citedreferenceA. Nahhas, H. K. Kim, and J. Blachere, Appl. Phys. Lett. 78, 1511 (2001).en_US
dc.identifier.citedreferenceX. L. Du, M. Murakami, H. Iwaki, and A. Yoshikawa, Phys. Status Solidi A 192, 183 (2002).en_US
dc.identifier.citedreferenceX. L. Du, M. Murakami, H. Iwaki, Y. Ishitani, and A. Yoshikawa, Jpn. J. Appl. Phys., Part 2 41, 1 (2002).en_US
dc.identifier.citedreferenceI. Ohkubo, Y. Matsumoto, A. Ohtomo, T. Ohnishi, A. Tsukazaki, M. Lippmaa, H. Koinuma, and M. Kawasaki, Appl. Surf. Sci. 159–160, 514 (2000).en_US
dc.identifier.citedreferenceP. Fons, K. Iwata, S. Niki, A. Yamada, and K. Matsubara, J. Cryst. Growth 201–202, 627 (1999).en_US
dc.identifier.citedreferenceP. Fons, K. Iwata, A. Yamada, K. Matsubara, S. Niki, K. Nakahara, T. Tanabe, and H. Takasu, Appl. Phys. Lett. 77, 1801 (2000).en_US
dc.identifier.citedreferenceD. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).en_US
dc.identifier.citedreferenceP. M. Verghese and D. R. Clarke, J. Mater. Res. 14, 1039 (1999).en_US
dc.identifier.citedreferenceF. Vigue, P. Vennegues, S. Vezian, M. Laugt, and J.-P. Faurie, Appl. Phys. Lett. 79, 194 (2001).en_US
dc.identifier.citedreferenceS.-H. Lim, D. Shindo, H.-B. Kang, and K. Nakamura, J. Vac. Sci. Technol. B 19, 506 (2001).en_US
dc.identifier.citedreferenceD. Gerthsen, D. Litvinov, Th. Gruber, C. Kirchner, and A. Waag, Appl. Phys. Lett. 81, 3972 (2002).en_US
dc.identifier.citedreferenceL. Sagalowicz and G. R. Fox, J. Mater. Res. 14, 1876 (1999).en_US
dc.identifier.citedreferenceI. Ohkubo, A. Ohtomo, T. Ohnishi, Y. Mastumoto, H. Koinuma, and M. Kawasaki, Surf. Sci. 443, L1043 (1999).en_US
dc.identifier.citedreferenceQ. Y. Xu, Y. Wang, Y. G. Wang, X. L. Du, Q. K. Xue, and Z. Zhang, Appl. Phys. Lett. 84, 2069 (2004).en_US
dc.identifier.citedreferenceH. B. Kang, K. Nakamura, S. H. Lim, and D. Shindo, Jpn. J. Appl. Phys., Part 1 37, 781 (1998).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.