Show simple item record

Characterization of surface structure in sputtered Al films: Correlation to microstructure evolution

dc.contributor.authorLita, Adriana E.en_US
dc.contributor.authorSanchez, John E.en_US
dc.date.accessioned2010-05-06T21:44:42Z
dc.date.available2010-05-06T21:44:42Z
dc.date.issued1999-01-15en_US
dc.identifier.citationLita, Adriana E.; Sanchez, John E. (1999). "Characterization of surface structure in sputtered Al films: Correlation to microstructure evolution." Journal of Applied Physics 85(2): 876-882. <http://hdl.handle.net/2027.42/70172>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70172
dc.description.abstractQuantitative roughness and microstructural analysis of as-deposited Al films, 0.1–1.0 μm thick, were performed by atomic force microscopy (AFM), one-dimensional power spectral density analysis (1DPSD), transmission electron microscopy, and x-ray pole figure methods. The variation of grain size (d) with thickness (h) in the columnar grained film was d∝h0.9.d∝h0.9. The initial crystallographic texture was nearly random, with a strong Al (111) fiber texture evolving by ≈0.2 μm in deposited thickness. AFM imaging revealed a surface structure with hillocks, grains, and grain boundary grooves, and periodic within-grain ridges extending over entire grains. The root-mean-square surface height variation (RRMS)(RRMS) initially decreased during deposition but increased as RRMS∝h0.55RRMS∝h0.55 from 0.3 to 1.0 μm thickness. The 1DPSD analysis revealed three spatially resolved regimes of roughness evolution; a frequency independent regime at low frequency attributed to hillock growth, an intermediate frequency self-similar regime attributed to grains and grain boundary grooves, and a high frequency self-similar regime attributed to within-grain ridges. Two characteristic dimensions (CD) were defined at the inverse frequencies of transition between each 1DPSD roughness regime. CDICDI at high frequency was identified as the peak-to-peak ridge spacing which remained independent of film thickness. The ridge spacing is proposed to represent the upper limit of an effective surface diffusion length (λ0)(λ0) due to the effects of surface diffusion and flux shadowing. The CDIICDII at lower frequency was identified as the grain size which increased with thickness. The evolution and interactions of roughness and microstructural features are discussed in terms of surface diffusion, grain boundary motion, and flux shadowing mechanisms. © 1999 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent328258 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleCharacterization of surface structure in sputtered Al films: Correlation to microstructure evolutionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70172/2/JAPIAU-85-2-876-1.pdf
dc.identifier.doi10.1063/1.369206en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceS. Vaidya and A. K. Sinha, Thin Solid Films THSFAP75, 253 (1981).en_US
dc.identifier.citedreferenceD. J. Srolovitz, A. Mazor, and B. G. Bukiet, J. Vac. Sci. Technol. A JVTAD66, 2371 (1988).en_US
dc.identifier.citedreferenceG. S. Bales and A. Zangwill, J. Vac. Sci. Technol. A JVTAD69, 145 (1991).en_US
dc.identifier.citedreferenceC. Eisenmenger-Sittner, A. Bergauer, and H. Bangert, J. Appl. Phys. JAPIAU78, 4899 (1995).en_US
dc.identifier.citedreferenceB. A. Movchan and A. V. Demchishin, Fiz. Met. Metalloved. FMMTAK28, 653 (1969).en_US
dc.identifier.citedreferenceJ. A. Thornton, Annu. Rev. Mater. Sci. ARMSCX7, 239 (1977).en_US
dc.identifier.citedreferenceC. R. M. Grovenor, H. T. G. Hentzell, and D. A. Smith, Acta Metall. AMETAR32, 773 (1984).en_US
dc.identifier.citedreferenceE. Grantscharova, Thin Solid Films THSFAP224, 28 (1993).en_US
dc.identifier.citedreferenceM. J. Verkerk and W. Brankaert, Thin Solid Films THSFAP135, 77 (1986).en_US
dc.identifier.citedreferenceA. Barabasi and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995).en_US
dc.identifier.citedreferenceJ. M. Elson and J. M. Bennett, Appl. Opt. APOPAI34, 201 (1995).en_US
dc.identifier.citedreferenceJ. E. Sanchez, Jr., A. Lita, and C. Wauchope (unpublished).en_US
dc.identifier.citedreferenceK. L. Westra and D. J. Thomson, J. Vac. Sci. Technol. B JVTBD913, 344 (1995).en_US
dc.identifier.citedreferenceC. V. Thompson, J. Appl. Phys. JAPIAU58, 763 (1985).en_US
dc.identifier.citedreferenceS. Roberts and P. J. Dobson, Thin Solid Films THSFAP135, 137 (1986).en_US
dc.identifier.citedreferenceR. Stumpf and M. Scheffler, Phys. Rev. Lett. PRLTAO72, 254 (1994).en_US
dc.identifier.citedreferenceS. M. Sze, VLSI Technology (McGraw–Hill, New York, 1983), p. 69.en_US
dc.identifier.citedreferenceW. W. Mullins, J. Appl. Phys. JAPIAU28, 333 (1957).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.