Show simple item record

Excitonic photoluminescence linewidths in AlGaAs grown by molecular beam epitaxy

dc.contributor.authorReynolds, D. C.en_US
dc.contributor.authorBajaj, K. K.en_US
dc.contributor.authorLitton, C. W.en_US
dc.contributor.authorYu, P. W.en_US
dc.contributor.authorKlem, J.en_US
dc.contributor.authorPeng, C. K.en_US
dc.contributor.authorMorkoç, H.en_US
dc.contributor.authorSingh, Jaspriten_US
dc.date.accessioned2010-05-06T21:44:59Z
dc.date.available2010-05-06T21:44:59Z
dc.date.issued1986-03-17en_US
dc.identifier.citationReynolds, D. C.; Bajaj, K. K.; Litton, C. W.; Yu, P. W.; Klem, J.; Peng, C. K.; Morkoç, H.; Singh, Jasprit (1986). "Excitonic photoluminescence linewidths in AlGaAs grown by molecular beam epitaxy." Applied Physics Letters 48(11): 727-729. <http://hdl.handle.net/2027.42/70175>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70175
dc.description.abstractThe linewidths of excitonic transitions were measured in AlxGa1−xAs, grown by molecular beam epitaxy as a function of alloy composition x for values of x≲0.43 using high resolution photoluminescence spectroscopy at liquid helium temperature. The values of the linewidths thus measured are compared with the results of several theoretical calculations in which the dominant broadening mechanism is assumed to be the statistical potential fluctuations caused by the components of the alloy. An increase in the linewidth as a function of x is observed which is in essential agreement with the prediction of the various theoretical calculations. The linewidths of the excitonic transitions in AlxGa1−xAs observed in the present work are the narrowest ever reported in the literature, for example σ=2.1 meV for x=0.36, thus indicating very high quality material.en_US
dc.format.extent3102 bytes
dc.format.extent196329 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleExcitonic photoluminescence linewidths in AlGaAs grown by molecular beam epitaxyen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor,Michigan 48109en_US
dc.contributor.affiliationotherElectronic Research Branch, AFWAL/AADR, Wright–Patterson AFB, Ohio 45433en_US
dc.contributor.affiliationotherUniversity Research Center, Wright State University, Dayton, Ohio 45345en_US
dc.contributor.affiliationotherDepartment of Electrical Engineering and Coordinated Science Laboratory, 1101 West Springfield Avenue, University of Illinois, Urbana, Illinois 61801en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70175/2/APPLAB-48-11-727-1.pdf
dc.identifier.doi10.1063/1.96703en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceO. Goede, L. John, and D. Henning, Phys. Status Solidi B 89, K183 (1978).en_US
dc.identifier.citedreferenceJ. Singh and K. K. Bajaj, Appl. Phys. Lett. 44, 1975 (1984).en_US
dc.identifier.citedreferenceE. F. Schubert, E. O. Gobel, Y. Horikoshi, K. Ploog, and H. J. Queisser, Phys. Rev. B 30, 813 (1984).en_US
dc.identifier.citedreferenceD. C. Reynolds, C. W. Litton, K. K. Bajaj, P. W. Yu, J. Singh, P. J. Pearah, W. T. Masselink, T. Henderson, J. Klem, and H. Morkot;, J. Vac. Sci. Technol. B (in press).en_US
dc.identifier.citedreferenceT. J. Drummond, H. Morkoç, and A. Y. Cho, J. Cryst. Growth 56, 449 (1982).en_US
dc.identifier.citedreferenceD. C. Reynolds, K. K. Bajaj, C. W. Litton, and E. B. Smith, Phys. Rev. B 28, 3300 (1983).en_US
dc.identifier.citedreferenceP. J. Pearah, W. T. Masselink, J. Klem, T. Henderson, H. Morkoç, C. W. Litton, and D. C. Reynolds, Phys. Rev. B 32, 3857 (1985).en_US
dc.identifier.citedreferenceH. C. Casey and M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), Part A, Chap. 4.en_US
dc.identifier.citedreferenceD. C. Reynolds, K. K. Bajaj, C. W. Litton, J. Singh, P. W. Yu, T. Henderson, P. Pearah, and H. Morkoç, J. Appl. Phys. 58, 1643 (1985).en_US
dc.identifier.citedreferenceD. M. Larsen, Phys. Rev. B 8, 535 (1973).en_US
dc.identifier.citedreferenceG. Wicks, W. I. Wang, C. E. C. Wood, L. F. Eastman, and L. Rathbun, J. Appl. Phys. 52, 5792 (1981).en_US
dc.identifier.citedreferenceJ. M. Ballingall and D. M. Collins, J. Appl. Phys. 54, 34 (1983).en_US
dc.identifier.citedreferenceM. Heiblum, E. E. Mendez, and L. Osterling, J. Appl. Phys. 54, 6982 (1983).en_US
dc.identifier.citedreferenceJ. R. Shealy, V. H. Kreismanis, D. K. Wagner, and J. M. Woodall, Appl. Phys. Lett. 42, 83 (1983).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.