Show simple item record

On the Structure of Plane Detonation Waves

dc.contributor.authorAdamson, Thomas Charles Jr.en_US
dc.date.accessioned2010-05-06T21:50:54Z
dc.date.available2010-05-06T21:50:54Z
dc.date.issued1960-09en_US
dc.identifier.citationAdamson, T. C. (1960). "On the Structure of Plane Detonation Waves." Physics of Fluids 3(5): 706-714. <http://hdl.handle.net/2027.42/70238>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70238
dc.description.abstractA steady planar detonation wave, considered to be a shock wave followed by a reaction zone, is studied with both irreversible and reversible first‐order reaction kinetics. A perturbation solution with first‐order transport effects, valid in the reaction zone for those cases where the ratio of the characteristic collision time to the characteristic chemical time is small compared to one, is presented with sample calculations of temperature and concentration distributions for typical irreversible and reversible reaction cases. Analysis of the solution shows that simple series solutions and hence the given perturbation solutions do not hold near the hot boundary for all possible final Mach numbers. In the irreversible reaction case, the perturbation solution is a valid approximation for final Mach numbers less than (1 − B)☒, where B is the ratio of characteristic times, the approximation becoming less accurate as the Mach numbers tend toward this limiting value. In the reversible reaction case, the perturbation solution is a valid approximation for final Mach numbers up to the Chapman‐Jouguet value of unity, if the Mach number is based on the equilibrium speed of sound.en_US
dc.format.extent3102 bytes
dc.format.extent695896 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleOn the Structure of Plane Detonation Wavesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumThe University of Michigan, Ann Arbor, Michiganen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70238/2/PFLDAS-3-5-706-1.pdf
dc.identifier.doi10.1063/1.1706114en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceJ. von Neumann, “On the theory of stationary detonation waves,” Ballistic Research Laboratories, Aberdeen Proving Ground, File No. X122, September 20, 1948.en_US
dc.identifier.citedreferenceD. L. Chapman, Phil. Mag. 47, 90 (1899); E. Jouguet, J. Mathematique 6, No. 1, 347 (1905) and 6, No. 2, 6 (1906).en_US
dc.identifier.citedreferenceT. von Kármán, Aerotecnica, 33, 80 (1953).en_US
dc.identifier.citedreferenceS. Brinkley and J. Richardson, “On the structure of plane detonation waves with finite reaction velocity,” Fourth Symposium on Combustion, Cambridge, Massachusetts 1952, pp. 450–457.en_US
dc.identifier.citedreferenceJ. G. Kirkwood and W. W. Wood, J. Chem. Phys. 22, 1915 (1954).en_US
dc.identifier.citedreferenceW. W. Wood and J. G. Kirkwood, J. Chem. Phys. 25, 1276 (1956).en_US
dc.identifier.citedreferenceW. W. Wood and J. G. Kirkwood, J. Chem. Phys. 29, 957A (1958).en_US
dc.identifier.citedreferenceJ. O. Hirschfelder and C. F. Curtiss, J. Chem. Phys. 28, 1130 (1958).en_US
dc.identifier.citedreferenceB. Linder, C. F. Curtiss, and J. O. Hirschfelder, J. Chem. Phys. 28, 1147 (1958).en_US
dc.identifier.citedreferenceC. F. Curtiss, J. O. Hirschfelder, and M. P. Barnett, J. Chem. Phys. 30, 470 (1959).en_US
dc.identifier.citedreferenceJ. A. Nicholls, E. K. Dabora, and R. L. Gealer, “Studies in connection with stabilized gaseous detonation waves,” Seventh Symposium on Combustion, Oxford, England, September 1958, pp. 766–772.en_US
dc.identifier.citedreferenceR. A. Gross, ARS Journal, January 1959, pp. 63–64.en_US
dc.identifier.citedreferenceUpon submission of this paper, it was learned that similar solutions had been found simultaneously by Dr. W. W. Wood at the Los Alamos Scientific Laboratory. See Rept. No. GMX‐10‐38‐A, “On perturbation solutions for Navier Stokes detonations based on the von Neumann solution as the zeroth‐order approximation.”en_US
dc.identifier.citedreferenceJ. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (John Wiley & Sons, Inc., New York, 1954).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.