Show simple item record

The spacing of streaks in unsteady turbulent wall‐bounded flow

dc.contributor.authorBrereton, Giles Johnen_US
dc.contributor.authorHwang, J. ‐L.en_US
dc.date.accessioned2010-05-06T21:58:44Z
dc.date.available2010-05-06T21:58:44Z
dc.date.issued1994-07en_US
dc.identifier.citationBrereton, G. J.; Hwang, J.‐L. (1994). "The spacing of streaks in unsteady turbulent wall‐bounded flow." Physics of Fluids 6(7): 2446-2454. <http://hdl.handle.net/2027.42/70321>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70321
dc.description.abstractThe spacing of streaks of low‐speed fluid has been studied experimentally in a wall‐bounded turbulent flow in which sinusoidal unsteadiness was superposed on an otherwise steady mainstream over a range of frequencies. The modulation of phase‐conditioned streak spacing about its mean value does not follow the steady wall‐flow relation of λuτ/ν equal to a constant. Instead, it is quite accurately described by a local length scale that models the momentary value of the total shear distortion of large eddies of the flow. This single shear‐distortion length scale also correlates well with the streak spacing measured in steady wall‐bounded flows and in unbounded homogeneous turbulent flow at high shear rates. The apparent generality of these results implies that the streak‐spacing selection mechanism depends strongly on the strain history of large‐scale coherent motions and so should be investigated in the context of the coupled straining processes of turbulence production.en_US
dc.format.extent3102 bytes
dc.format.extent1295669 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleThe spacing of streaks in unsteady turbulent wall‐bounded flowen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70321/2/PHFLE6-6-7-2446-1.pdf
dc.identifier.doi10.1063/1.868192en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceS. J. Kline and P. W. Runstadler, “Some preliminary results of visual studies of the wall layers of the turbulent boundary layers,” J. Appl. Mech. 81, Part 3, 166 (1959).en_US
dc.identifier.citedreferenceS. J. Kline, W. C. Reynolds, F. A. Schraub, and P. W. Runstadler, “The structure of turbulent boundary layers,” J. Fluid Mech. 30, 741 (1967).en_US
dc.identifier.citedreferenceM. K. Lee, L. D. Eckelmann, and T. J. Hanratty, “Identification of turbulent wall eddies through the phase relationship of the components of the fluctuating velocity gradient,” J. Fluid Mech. 66, 17 (1974).en_US
dc.identifier.citedreferenceD. Oldaker and W. G. Tiederman, “Spatial structure of the viscous sublayer in drag-reducing channel flows,” Phys. Fluids 20, S133 (1977).en_US
dc.identifier.citedreferenceH. T. Kim, S. J. Kline, and W. C. Reynolds, “The production of turbulence near a smooth wall in a turbulent boundary layer,” J. Fluid Mech. 50, 133 (1971).en_US
dc.identifier.citedreferenceJ. A. Clark, “A study of incompressible turbulent boundary layers in channel flow,” J. Basic Eng. Trans. ASME 90, 455 (1968).en_US
dc.identifier.citedreferenceM. J. Lee, J. Kim, and P. Moin, “Structure of turbulence at high shear rate,” J. Fluid Mech. 216, 561 (1990).en_US
dc.identifier.citedreferenceM. T. Landahl, “On sublayer streaks,” J. Fluid Mech. 212, 593 (1990).en_US
dc.identifier.citedreferenceJ. Kim, P. Moin, and R. Moser, “Turbulent statistics in fully developed channel flow at low Reynolds number,” J. Fluid Mech. 177, 133 (1987).en_US
dc.identifier.citedreferenceG. Kawahara, K. Ayukawa, and J. Ochi, “On the origin of streaky structures in wall-bounded turbulent flows,” Near-Wall Turbulent Flows, edited by R. M. C. So, C. G. Speziale, and B. E. Launder (Elsevier, New York, 1993), p. 403.en_US
dc.identifier.citedreferenceP. S. Jang, D. J. Benney, and R. L. Gran, “On the origin of streamwise vortices in a turbulent boundary layer,” J. Fluid Mech. 169, 109 (1986).en_US
dc.identifier.citedreferenceD. J. Benney and L. H. Gustavsson, “A new mechanism for linear and nonlinear hydrodynamic stability,” Stud. Appl. Math. 64, 185 (1981).en_US
dc.identifier.citedreferenceF. Waleffe and J. Kim, “On the origin of streaks in turbulent shear flows,” Proceedings of the 8th Symposium on Turbulent Shear Flows, Munich, 1991.en_US
dc.identifier.citedreferenceT. Sarpkaya, “On the instability of the Stokes boundary layer,” Near-Wall Turbulent Flows, edited by R. M. C. So, C. G. Speziale, and B. E. Launder (Elsevier, New York, 1993), p. 479.en_US
dc.identifier.citedreferenceJ.-L. Hwang and G. J. Brereton, “Turbulence in high-frequency periodic fully developed pipe flow,” Turbulent Shear Flows 8, edited by F. Durst, B. E. Launder, F. W. Schmidt, U. Schumann, and J. H. Whitelaw (Springer, Berlin, 1993), p. 431.en_US
dc.identifier.citedreferenceS. Tardu and G. Binder, “Ejections and bursts in pulsatile turbulent wall flow measurements and visualizations,” Proceedings of the 7th Symposium on Turbulent Shear Flows, Stanford University, Stanford, CA, 1989.en_US
dc.identifier.citedreferenceG. J. Brereton and W. C. Reynolds, “Dynamic response of boundary layer turbulence to oscillatory shear,” Phys. Fluids A 3, 178 (1991).en_US
dc.identifier.citedreferenceJ.-L. Hwang, “An experimental study of the fluid mechanics of turbulent pipe flow when subjected to forced oscillation at high frequencies,” Ph.D. thesis, The University of Michigan, Ann Arbor, Michigan, 1992.en_US
dc.identifier.citedreferenceT. S. Luchik and W. G. Tiederman, “Timescale and structure of ejections and bursts in turbulent channel flows,” J. Fluid Mech. 174, 529 (1987).en_US
dc.identifier.citedreferenceL. Shemer, E. Kit, and I. Wygnanski, “On the impedance of the pipe in laminar and turbulent pulsating flows,” Exp. Fluids 3, 185 (1985).en_US
dc.identifier.citedreferenceA. K. M. F. Hussein and W. C. Reynolds, “The mechanics of an organized wave in turbulent shear flow,” J. Fluid Mech. 41, 241 (1970).en_US
dc.identifier.citedreferenceF. A. Schraub, S. J. Kline, J. Henry, P. W. Runstadler, and A. Littell, “Use of hydrogen bubbles for quantitative determination of time-dependent velocity fields in low-speed water flows,” J. Basic Eng. Trans. ASME 87, 429 (1965).en_US
dc.identifier.citedreferenceB. V. Achia and D. W. Thompson, “Structure of the turbulent boundary layer in drag-reducing pipe flow,” J. Fluid Mech. 81, 439 (1976).en_US
dc.identifier.citedreferenceC. R. Smith and S. P. Metzler, “The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer,” J. Fluid Mech. 129, 27 (1983).en_US
dc.identifier.citedreferenceG. J. Brereton, “Deduction of skin friction by Clauser technique in unsteady turbulent boundary layers,” Exp. Fluids. 7, 422 (1989).en_US
dc.identifier.citedreferenceT. Sarpkaya, “Coherent structures in oscillatory boundary layers,” J. Fluid Mech. 253, 105 (1993).en_US
dc.identifier.citedreferenceM. J. Lee, J. Kim, and P. Moin, “Turbulence structure at high shear rate,” Proceedings of the 6th Symposium on Turbulent Shear Flows, Toulouse, France, 1987, p. 22.6.1.en_US
dc.identifier.citedreferenceA. A. Townsend, “Entrainment and the structure of turbulent flow,” J. Fluid Mech. 41, 13 (1970).en_US
dc.identifier.citedreferenceA. A. Townsend, The Structure of Turbulent Shear Flow (Cambridge U.P., Cambridge, 1976).en_US
dc.identifier.citedreferenceA. A. Townsend, “The response of sheared turbulence to additional distortion,” J. Fluid Mech. 98, 171 (1980).en_US
dc.identifier.citedreferenceM. R. Maxey, “Distortion of turbulence in flows with parallel streamlines,” J. Fluid Mech. 124, 261 (1982).en_US
dc.identifier.citedreferenceN. Kasagi, “Structural study of near-wall turbulence and its heat transfer mechanism,” Near-Wall Turbulence: 1988 Zoran Zaric Memorial Conference, edited by S. J. Kline and N. H. Afgan (Hemisphere, New York, 1990), p. 596.en_US
dc.identifier.citedreferenceM. J. Lee and J. C. R. Hunt “The structure of sheared turbulence near a plane boundary,” in Ref. 16.en_US
dc.identifier.citedreferenceT. Theodorsen, “Mechanism of turbulence,” in Proceedings of the 2nd Midwestern Conference on Fluid Mechanics, Ohio State University, Columbus, Ohio, 1952.en_US
dc.identifier.citedreferenceM. R. Head and P. Bandyopadhyay, “New aspects of turbulent boundary layer structure,” J. Fluid Mech. 107, 297 (1981).en_US
dc.identifier.citedreferenceH. Aref and E. P. Flinchem, “Dynamics of a vortex filament in a shear flow,” J. Fluid Mech. 148, 477 (1984).en_US
dc.identifier.citedreferenceC. R. Smith, J. D. A. Walker, A. H. Haidari, and U. Sobrun, “On the dynamics of near-wall turbulence,” Philos. Trans. R. Soc. London Ser. A 336, 131 (1991).en_US
dc.identifier.citedreferenceN. D. Sandham and L. Kleiser, “The late stages of transition to turbulence in channel flow,” J. Fluid Mech. 245, 319 (1992).en_US
dc.identifier.citedreferenceP. Bakewell and J. L. Lumley, “Viscous sublayer and adjacent wall region in turbulent pipe flow,” Phys. Fluids 10, 1880 (1967).en_US
dc.identifier.citedreferenceR. F. Blackwelder and H. Eckelmann, “Streamwise vortices associated with the bursting phenomenon,” J. Fluid Mech. 94, 577 (1979).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.