Show simple item record

Low‐Frequency Beam‐Plasma Interactions in a Finite‐Sized Plasma

dc.contributor.authorBhatnagar, Ved P.en_US
dc.contributor.authorGetty, W. D.en_US
dc.date.accessioned2010-05-06T22:00:25Z
dc.date.available2010-05-06T22:00:25Z
dc.date.issued1972-12en_US
dc.identifier.citationBhatnagar, V. P.; Getty, W. D. (1972). "Low‐Frequency Beam‐Plasma Interactions in a Finite‐Sized Plasma." Physics of Fluids 15(12): 2222-2230. <http://hdl.handle.net/2027.42/70339>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70339
dc.description.abstractResults are presented for an experimental and theoretical investigation of low‐frequency waves in a beam‐generated plasma. Waves are excited at frequencies immediately above the ion‐plasma frequency by sinusoidally modulating the electron beam current. The study is aimed at obtaining ion heating at the lower‐hybrid resonant frequency. An electron beam of 400‐1000 V energy and a few milliamperes of current is used to generate plasmas with densities in the range of 109 cm−3 in a magnetic field of a few hundred gauss. Hydrogen, argon, deuterium, and neon gases are used. The rf electric field is probed as a function of r, zr,z, and frequency, and energetic ions are detected by a gridded probe. Two or three resonances are found in the probe response above ωpiωpi, and are shown to be multiple half‐wavelength resonances of standing plasma waveguide axisymmetric modes. A normal‐mode analysis is used to calculate the probe responses and is found to correctly predict the effects of varying beam voltage, plasma density, ion mass, and dc axial magnetic field. The excited wave may be viewed as an electrostatic wave propagating at an angle very close to 90 deg from the magnetic field.en_US
dc.format.extent3102 bytes
dc.format.extent781098 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleLow‐Frequency Beam‐Plasma Interactions in a Finite‐Sized Plasmaen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumElectron Physics Laboratory, Department of Electrical and Computer Engineering, The University of Michigan, Ann Arbor, Michigan 48104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70339/2/PFLDAS-15-12-2222-1.pdf
dc.identifier.doi10.1063/1.1693860en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceG. M. Haas and M. Eisner, Phys. Fluids 14, 606 (1971).en_US
dc.identifier.citedreferenceG. M. Haas and M. A. Eisner, Bull. Am. Phys. Soc. 13, 1517 (1968).en_US
dc.identifier.citedreferenceV. P. Bhatnagar and W. D. Getty, Phys. Rev. Letters 26, 1527 (1971).en_US
dc.identifier.citedreferenceV. P. Bhatnagar and W. D. Getty, Phys. Fluids 15, 514 (1972).en_US
dc.identifier.citedreferenceG. M. Haas, W. B. Ard, M. C. Becker, R. A. Dandl, A. C. England, R. L. Livesey, O. D. Matlock, and M. W. McGuffin, Oak Ridge National Laboratory, Report No. ORNL 4063 (1967), p. 40.en_US
dc.identifier.citedreferenceG. M. Haas and R. A. Dandl, Phys. Fluids 10, 678 (1967).en_US
dc.identifier.citedreferenceD. R. Beeth, G. M. Haas, and M. Eisner, Bull. Am. Phys. Soc. 15, 1408 (1970).en_US
dc.identifier.citedreferenceG. M. Haas, Phys. Fluids 12, 2455 (1969).en_US
dc.identifier.citedreferenceW. P. Allis, S. J. Buchsbaum, and A. Bers, Waves in Anisotropic Plasmas (M.I.T. Press, Cambridge, Mass., 1963), Chap. 3.en_US
dc.identifier.citedreferenceH. Groendijk, M. T. Vlaardingerbroek, and K. R. U. Weimer, Philips Res. Rep. 20, 485 (1965).en_US
dc.identifier.citedreferenceD. A. Dunn, W. Nichparenko, J. E. Simpson, and K. I. Thomassen, J. Appl. Phys. 36, (1965).en_US
dc.identifier.citedreferenceW. E. Scharfman, Phys. Fluids 11, 689 (1968).en_US
dc.identifier.citedreferenceJ. Frey and C. K. Birdsall, J. Appl. Phys. 37, 2051 (1966).en_US
dc.identifier.citedreferenceR. J. Briggs, Electron‐Stream Interaction with Plasmas (M.I.T. Press, Cambridge, Mass., 1964), Appendix G.en_US
dc.identifier.citedreferenceS. A. Self, J. Appl. Phys. 40, 5217 (1969).en_US
dc.identifier.citedreferenceJ. D. Gillanders (private communication).en_US
dc.identifier.citedreferenceV. P. Bhatnagar, Ph.D. thesis, The University of Michigan, 1971.en_US
dc.identifier.citedreferenceW. M. Hooke and S. Bernabei, Phys. Rev. Letters 28, 407 (1972).en_US
dc.identifier.citedreferenceP. L. Auer, H. Hurwitz, Jr., and R. D. Miller, Phys. Fluids 1, 501 (1958).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.