Show simple item record

Rotational spectrum, structure and modeling of the SO2–CS2SO2–CS2 complex

dc.contributor.authorPeebles, Sean A.en_US
dc.contributor.authorSun, Linghongen_US
dc.contributor.authorKuczkowski, Robert L.en_US
dc.date.accessioned2010-05-06T22:08:29Z
dc.date.available2010-05-06T22:08:29Z
dc.date.issued1999-04-08en_US
dc.identifier.citationPeebles, Sean A.; Sun, Linghong; Kuczkowski, Robert L. (1999). "Rotational spectrum, structure and modeling of the SO2–CS2SO2–CS2 complex." The Journal of Chemical Physics 110(14): 6804-6811. <http://hdl.handle.net/2027.42/70425>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70425
dc.description.abstractThe rotational spectra of seven isotopomers of the SO2–CS2SO2–CS2 van der Waals dimer have been observed with a Fourier transform microwave spectrometer. The rotational constants for the normal species were determined to be A = 2413.2000(3) MHz,A=2413.2000(3)MHz, B = 1105.3803(3) MHzB=1105.3803(3)MHz and C = 884.9885(2) MHz.C=884.9885(2)MHz. They are consistent with the SO2SO2 straddling the CS2CS2 molecule and CsCs symmetry for the complex. The centers of mass of the two monomers are separated by 3.4287(2) Å. Two structures were found that are consistent with this symmetry which differ in the relative tilt of the CS2CS2 and SO2.SO2. In both structures, the C2C2 axis of the SO2SO2 is aligned close to parallel to the CS2CS2 molecular axis with the oxygen end of the SO2SO2 tipped closer to the CS2.CS2. In one structure the deviation from parallel is 9.8(8)° while in the other it is 17.7(11)°. The dipole moment components have been determined to be μa = 0.0137(5) Dμa=0.0137(5)D and μb = 1.1961(9) D.μb=1.1961(9)D. A semi-empirical model employing electrostatic, dispersion and repulsion interactions was employed to analyze the system and resulted in a reasonable reproduction of the angular geometry. A comparison of the results for the SO2–CS2SO2–CS2 complex with the closely related SO2–CO2SO2–CO2 and SO2–OCSSO2–OCS complexes is presented. © 1999 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent155162 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleRotational spectrum, structure and modeling of the SO2–CS2SO2–CS2 complexen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70425/2/JCPSA6-110-14-6804-1.pdf
dc.identifier.doi10.1063/1.478584en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceL. H. Sun, I. I. Ioannou, and R. L. Kuczkowski, Mol. Phys. MOPHAM88, 255 (1996).en_US
dc.identifier.citedreferenceS. A. Peebles, L. H. Sun, I. I. Ioannou, and R. L. Kuczkowski, J. Mol. Struct. (in press).en_US
dc.identifier.citedreferenceJ. N. Watson, I. E. Craven, and G. L. D. Ritchie, Chem. Phys. Lett. CHPLBC274, 1 (1994).en_US
dc.identifier.citedreferenceT. J. Balle and W. H. Flygare, Rev. Sci. Instrum. RSINAK52, 33 (1981).en_US
dc.identifier.citedreferenceJ. S. Muenter, J. Chem. Phys. JCPSA648, 4544 (1968).en_US
dc.identifier.citedreferenceJ. K. G. Watson, J. Chem. Phys. JCPSA646, 1935 (1969).en_US
dc.identifier.citedreferenceD. Patel, D. Margolese, and T. R. Dyke, J. Chem. Phys. JCPSA670, 2740 (1979).en_US
dc.identifier.citedreferenceM. D. Harmony, V. W. Laurie, R. L. Kuczkowski, R. H. Schwendeman, D. A. Ramsay, F. J. Lovas, W. J. Lafferty, and A. G. Maki, J. Phys. Chem. Ref. Data. JPCRBU8, 619 (1979).en_US
dc.identifier.citedreferenceP. A. Helminger and F. C. DeLucia, J. Mol. Spectrosc. JMOSA3111, 66 (1985).en_US
dc.identifier.citedreferenceR. H. Schwendeman, in Critical Evaluation of Chemical and Physical Structural Information, edited by D. R. Lide and M. A. Paul (National Academy of Sciences, Washington, DC, 1974).en_US
dc.identifier.citedreferenceR. J. Wilson and R. L. Kuczkowski, J. Mol. Struct. JMOSB4376, 1 (1996).en_US
dc.identifier.citedreferenceA. M. Andrews, K. W. Hillig II, and R. L. Kuczkowski, J. Chem. Phys. JCPSA696, 1784 (1992).en_US
dc.identifier.citedreferenceJ. J. Oh, M. S. LaBarge, J. Matos, J. W. Kampf, K. W. Hillig II, and R. L. Kuczkowski, J. Am. Chem. Soc. JACSAT113, 4732 (1991).en_US
dc.identifier.citedreferenceC. G. Gray and K. E. Gubbins, Theory of Molecular Fluids Vol. I: Fundamentals (Oxford U. P., Oxford, 1984).en_US
dc.identifier.citedreferenceGAUSSIAN 98W (Revision A.6), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stevanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople (Gaussian Inc., Pittsburgh, PA, 1998).en_US
dc.identifier.citedreferenceJ. Kraitchman, Am. J. Phys. AJPIAS21, 17 (1953).en_US
dc.identifier.citedreferenceA. M. Andrews, A. Taleb-Bendiab, M. S. LaBarge, K. W. Hillig II, and R. L. Kuczkowski, J. Chem. Phys. JCPSA693, 7030 (1990).en_US
dc.identifier.citedreferenceA. J. Stone, A. Dullweber, M. P. Hodges, P. L. A. Popelier, and D. J. Wales, “ORIENT: A program for studying interactions between molecules, Version 3.2” (University of Cambridge, Cambridge, 1995).en_US
dc.identifier.citedreferenceCADPAC: The Cambridge Analytic Derivatives Package Issue 6, Cambridge, 1995. A suite of quantum chemistry programs developed by R. D. Amos with contributions from I. L. Alberts, J. S. Andrews, S. M. Colwell, N. C. Handy, D. Jayatilaka, P. J. Knowles, R. Kobayashi, K. E. Laidig, G. Laming, A. M. Lee, P. E. Maslen, C. W. Murray, J. E. Rice, E. D. Simandiras, A. J. Stone, M.-D. Su, and D. J. Tozer.en_US
dc.identifier.citedreferenceA. J. Stone, The Theory of Intermolecular Forces (Clarendon, Oxford, 1996).en_US
dc.identifier.citedreferenceK. Mirsky, “The determination of the intermolecular interaction energy by empirical methods,” in Computing in Crystallography, edited by R. Schenk, R. Olthof-Hazenkamp, H. van Koningveld, and G. C. Bassi (Delft U. P., Amsterdam, 1978).en_US
dc.identifier.citedreferenceS. A. Peebles and R. L. Kuczkowski, Chem. Phys. Lett. CHPLBC286, 421 (1998).en_US
dc.identifier.citedreferenceS. A. Peebles and R. L. Kuczkowski, J. Chem. Phys. JCPSA6109, 5276 (1998).en_US
dc.identifier.citedreferenceS. A. Peebles and R. L. Kuczkowski, J. Phys. Chem. JPCHAX102, 8091 (1998).en_US
dc.identifier.citedreferenceR. A. Peebles, S. A. Peebles, and R. L. Kuczkowski, Mol. Phys. (in press).en_US
dc.identifier.citedreferenceS. A. Peebles and R. L. Kuczkowski, J. Mol. Struct. JMOSB4447, 151 (1998).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.