Show simple item record

Field‐dependent relaxation and absolute nuclear shielding of 207Pb in liquid PbCl4

dc.contributor.authorHawk, Roger M.en_US
dc.contributor.authorSharp, Robert R.en_US
dc.date.accessioned2010-05-06T22:13:34Z
dc.date.available2010-05-06T22:13:34Z
dc.date.issued1974-02-01en_US
dc.identifier.citationHawk, Roger M.; Sharp, Robert R. (1974). "Field‐dependent relaxation and absolute nuclear shielding of 207Pb in liquid PbCl4." The Journal of Chemical Physics 60(3): 1009-1017. <http://hdl.handle.net/2027.42/70479>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70479
dc.description.abstractRelaxation times T1 and T2 of 207Pb in liquid PbCl4 have been studied for the purpose of establishing an absolute nuclear shielding scale for lead. T1 has been decomposed into scalar and spin‐rotation contributions using variable temperature measurements at the two field strengths 6.59 and 16.90 kG. T2 is much shorter than T1 and is strongly dominated by scalar coupling to chlorine. Knowledge of the scalar contributions to T1 and T2 determines the halogen relaxation times (τ35 = 7.15 μsec at 25°C), the lead‐chlorine coupling constant [(J(207Pb−35Cl) = 705 Hz)], and the reorientational correlation time (τθ = 1.72 × 10−11 sec at 25°C). A correlation time τJ for the angular momentum vector has been computed using J diffusion theory, but the value obtained appears to be too short (0.8–2.9 × 10−14 sec) to be meaningful in terms of classical diffusion of rigid molecules. Nevertheless, the known range of 207Pb chemical shifts places an absolute upper limit on τJ of 6 × 10−14 sec at 263°K. The physical significance of such short correlation times is discussed, and it is concluded that τJ probably describes collision‐induced distortions in the molecular structure. Experimental values of the spin‐rotation contribution to (T1)−1 are used in conjunction with estimated values of τJ to compute limiting values for the spin‐rotation constant that place limits on the paramagnetic part of the magnetic shielding constant. A shielding scale previously deduced from optical pumping data is discussed, and a source of possibly substantial error in this scale is pointed out.en_US
dc.format.extent3102 bytes
dc.format.extent656640 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleField‐dependent relaxation and absolute nuclear shielding of 207Pb in liquid PbCl4en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70479/2/JCPSA6-60-3-1009-1.pdf
dc.identifier.doi10.1063/1.1681108en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceW. H. Flygare, J. Chem. Phys. 41, 793 (1964).en_US
dc.identifier.citedreferenceS. I. Chan, J. Chem. Phys. 47, 1191 (1967).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Chem. Phys. 57, 5321 (1972).en_US
dc.identifier.citedreferenceR. M. Hawk and R. R. Sharp, J. Magn. Reson. 10, 385 (1973).en_US
dc.identifier.citedreferenceJ. E. Maciel and J. L. Dallas, J. Am. Chem. Soc. 95, 3039 (1973).en_US
dc.identifier.citedreferenceH. M. Gibbs and C. M. White, Phys. Rev. 188, 180 (1969).en_US
dc.identifier.citedreferenceH. M. Gibbs, B. Chang, and R. C. Greenhow, Phys. Rev. Lett. 22, 270 (1969).en_US
dc.identifier.citedreferenceO. Lutz and G. Stricker, Phys. Lett. A 35, 397 (1971).en_US
dc.identifier.citedreferenceG. Brauer, Handbook of Preparative Inorganic Chemistry, (Academic, New York, 1963), Vol. 1, p. 750.en_US
dc.identifier.citedreferenceH. Friedrich, Ber. Bunsenges. Phys. Chem. 26, 1434 (1893).en_US
dc.identifier.citedreferenceK. van Putte, J. Magn. Reson. 2, 174 (1970).en_US
dc.identifier.citedreferenceA. Kumar and C. S. Johnson, Jr., J. Magn. Reson. 7, 55 (1972).en_US
dc.identifier.citedreferenceR. J. H. Clark and B. K. Hunter, J. Mol. Struct. 9, 354 (1971).en_US
dc.identifier.citedreferenceJ. T. Neu and W. D. Gwinn, J. Am. Chem. Soc. 70, 3463 (1948).en_US
dc.identifier.citedreferenceA. Muller and B. Krebs, J. Mol. Spectrosc. 24, 180 (1967).en_US
dc.identifier.citedreferenceA. Abragam, The Principles of Nuclear Magnetism (Oxford U.P., London, 1961), Chap. VIII.en_US
dc.identifier.citedreferenceC. H. Townes, Handbücher Physik, edited by S. Flügge (Springer, Berlin, 1958), Vol. 38, p. 444.en_US
dc.identifier.citedreferenceJ. J. Burke and P. C. Lauterbur, J. Am. Chem. Soc. 83, 326 (1961).en_US
dc.identifier.citedreferenceYa. A. Fialkov and Ya. P. Nazarenko, Izv. Akad. Nauk SSSR Otd. Khim. Nauk 1950, 590; Dokl. Akad. Nauk SSSR 73, 727 (1950).en_US
dc.identifier.citedreferenceJ. R. Wilson and J. E. Willard, J. Phys. Chem. 70, 1665 (1966).en_US
dc.identifier.citedreferenceJ. N. Wilson and R. G. Dickinson, J. Am. Chem. Soc. 61, 3519 (1939).en_US
dc.identifier.citedreferenceM. Kahn and A. J. Freedman, J. Am. Chem. Soc. 76, 929 (1954).en_US
dc.identifier.citedreferenceP. S. Hubbard, Phys. Rev. 131, 1155 (1963).en_US
dc.identifier.citedreferenceR. E. D. McClung, J. Chem. Phys. 51, 3842 (1969).en_US
dc.identifier.citedreferenceK. J. Johnson, J. P. Hunt, and H. W. Dodgen, J. Chem. Phys. 51, 4493 (1969).en_US
dc.identifier.citedreferenceJ. V. DiLorenzo and R. F. Schneider, Inorg. Chem. 6, 766 (1967).en_US
dc.identifier.citedreferenceR. E. D. McClung, Chem. Phys. Lett. 19, 304 (1973).en_US
dc.identifier.citedreferenceW. A. Steele et al., J. Chem. Phys. 38, 2404 (1963); J. Chem. Phys. 38, 2411 (1963); J. Chem. Phys. 38, 2418 (1963).en_US
dc.identifier.citedreferenceM. Fixman and K. Ryder, J. Chem. Phys. 51, 2425 (1969).en_US
dc.identifier.citedreferenceR. G. Gordon, J. Chem. Phys. 44, 1830 (1966).en_US
dc.identifier.citedreferenceR. E. D. McClung, J. Chem. Phys. 51, 3842 (1969).en_US
dc.identifier.citedreferenceR. E. D. McClung, J. Chem. Phys. 57, 5478 (1972).en_US
dc.identifier.citedreferenceA. A. Maryott, T. C. Farrar, and M. S. Malmberg, J. Chem. Phys. 54, 64 (1971).en_US
dc.identifier.citedreferenceK. T. Gillen, D. C. Douglass, M. S. Malmberg, and A. A. Maryott, J. Chem. Phys. 57, 5170 (1972).en_US
dc.identifier.citedreferenceR. E. D. McClung, J. Chem. Phys. 55, 3459 (1971).en_US
dc.identifier.citedreferenceN. F. Ramsey, Phys. Rev. 78, 699 (1950).en_US
dc.identifier.citedreferenceW. H. Flygare and J. Goodisman, J. Chem. Phys. 49, 3122 (1968).en_US
dc.identifier.citedreferenceK. M. S. Saxsena and P. T. Narasimham, Int. J. Quantum Chem. 1, 731 (1967).en_US
dc.identifier.citedreferenceK. T. Gillen, J. Chem. Phys. 56, 1573 (1972).en_US
dc.identifier.citedreferenceC. Deverell, Mol. Phys. 18, 319 (1970).en_US
dc.identifier.citedreferenceT. R. Fowler, Ph.D. thesis (University of California, Berkeley, 1969), University Microfilms (Pub. No. 69‐10, 292).en_US
dc.identifier.citedreferenceD. A. Frey and H. E. Weaver, J. Electrochem. Soc. 107, 930 (1960).en_US
dc.identifier.citedreferenceM. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957), p. 94.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.