Show simple item record

Vibrational relaxation of highly excited toluene

dc.contributor.authorToselli, Beatriz M.en_US
dc.contributor.authorBrenner, Jerrell D.en_US
dc.contributor.authorYerram, Murthy L.en_US
dc.contributor.authorChin, William E.en_US
dc.contributor.authorKing, Keith D.en_US
dc.contributor.authorBarker, John R.en_US
dc.date.accessioned2010-05-06T22:18:16Z
dc.date.available2010-05-06T22:18:16Z
dc.date.issued1991-07-01en_US
dc.identifier.citationToselli, Beatriz M.; Brenner, Jerrell D.; Yerram, Murthy L.; Chin, William E.; King, Keith D.; Barker, John R. (1991). "Vibrational relaxation of highly excited toluene." The Journal of Chemical Physics 95(1): 176-188. <http://hdl.handle.net/2027.42/70529>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70529
dc.description.abstractThe collisional loss of vibrational energy from gas‐phase toluene, pumped by a pulsed KrF laser operating at 248 nm, has been observed by monitoring the time‐resolved infrared fluorescence from the C–H stretch modes near 3.3 μm. The fragmentation quantum yield of toluene pumped at 248 nm was determined experimentally to be ∼6%. Energy‐transfer data were obtained for 20 collider gases, including unexcited toluene, and analyzed by an improved inversion technique that converts the fluorescence intensity to the bulk average energy, from which is extracted ⟨⟨ΔE⟩⟩, the bulk average amount of energy transferred per collision. Comparisons are presented of these results with similar studies of benzene and azulene, and with the time‐resolved ultraviolet absorption study of toluene carried out by Hippler et al. [J. Chem. Phys. 78, 6709 (1983)]. The present results show ⟨⟨ΔE⟩⟩ to be nearly directly proportional to the vibrational energy of the excited toluene from 5000 to 25 000 cm−1. For many of the colliders at higher energies, the energy dependence of ⟨⟨ΔE⟩⟩ is somewhat reduced. A simple method is described for obtaining good estimates of ⟨ΔE⟩d (the energy transferred per collision in deactivating collisions) by carrying out an appropriate least‐squares analysis of the ⟨⟨ΔE⟩⟩ data. The values of ⟨ΔE⟩d are then used in master‐equation calculations to investigate possible contributions from ‘‘supercollisions’’ (in which surprisingly large amounts of energy are transferred) in the deactivation of toluene.en_US
dc.format.extent3102 bytes
dc.format.extent1088509 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleVibrational relaxation of highly excited tolueneen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumThe Department of Atmospheric, Oceanic, and Space Sciences, Space Physics Research Laboratory, The University of Michigan, Ann Arbor, Michigan 48109‐2143en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70529/2/JCPSA6-95-1-176-1.pdf
dc.identifier.doi10.1063/1.461473en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreference(a) D. C. Tardy and B. S. Rabinovitch, Chem. Rev. 77, 369 (1977); (b) M. Quack and J. Troe, Gas Kinetics and Energy Transfer (Chemical Society, London, 1977), Vol. 2; (c) H. Hippler and J. Troe, in Bimolecular Collisions, edited by J. E. Baggott and M. N. Ashford (The Royal Society of Chemistry, London, 1989), p. 209; (d) I. Oref and D. C. Tardy, Chem. Rev. 90, 1407 (1990).en_US
dc.identifier.citedreference(a) M. J. Rossi, J. R. Pladziewicz, and J. R. Barker, J. Chem. Phys. 78, 6695 (1983), and references therein; (b) J. R. Barker, J. Phys. Chem. 88, 11 (1984); (c) J. R. Barker and R. E. Golden, 88, 1012 (1984); (d) J. Shi, D. Bernfeld, and J. R. Barker, J. Chem. Phys. 88, 6211 (1988); (e) J. Shi and J. R. Barker, 88, 6219 (1988).en_US
dc.identifier.citedreferenceJ. M. Zellweger, T. C. Brown, and J. R. Barker, J. Chem. Phys. 83, 6261 (1985).en_US
dc.identifier.citedreferenceM. L. Yerram, J. D. Brenner, K. D. King, and J. R. Barker, J. Phys. Chem. 94, 6341 (1990).en_US
dc.identifier.citedreferenceB. M. Toselli and J. R. Barker (unpublished).en_US
dc.identifier.citedreference(a) H. Hippler, J. Troe, and J. Wendelken, Chem. Phys. Lett. 84, 257 (1981); (b) J. Chem. Phys. 78, 5351 (1983); 78, 6709 (1983); 78, 6718 (1983); (c) 80, 1853 (1984); (d) H. Hippler, L. Lindemann, and J. Troe, 83, 3906 (1985); (e) H. Hippler, B. Otto, and J. Troe, Ber. Bunsenges, Phys. Chem. 93, 428 (1989).en_US
dc.identifier.citedreferenceN. Nakashima and K. Yoshihara, J. Chem. Phys. 77, 6040 (1982); 79, 2727 (1983).en_US
dc.identifier.citedreferenceB. Abel, B. Herzog, H. Hippler, and J. Troe, J. Chem. Phys. 91, 900 (1989).en_US
dc.identifier.citedreferenceM. Heymann, H. Hippler, D. Nahr, H. J. Plach, and J. Troe, J. Phys. Chem. 92, 5507 (1988).en_US
dc.identifier.citedreferenceJ. E. Dove, H. Hippler, and J. Troe, J. Chem. Phys. 82, 1907 (1985); M. Heymann, H. Hippler, H. J. Plach, and J. Troe, 87, 3867 (1987).en_US
dc.identifier.citedreferenceFor a review, see J. R. Barker and B. M. Toselli, in Photothermal Investigations of Solids and Fluids, edited by Jeffrey A. Sell (Academic, Boston, 1989),p.l55.en_US
dc.identifier.citedreferenceB. M. Toselli, T. L. Walunas, and J. R. Barker, J. Chem. Phys. 92, 4793 (1990).en_US
dc.identifier.citedreferenceT. J. Wallington, M. D. Scheer, and W. Braun, Chem. Phys. Lett. 138, 538 (1987).en_US
dc.identifier.citedreferenceK. M. Beck, A. Rengwelski, and R. J. Gordon, Chem. Phys. Lett. 121, 529 (1985); K. M. Beck and R. J. Gordon, J. Chem. Phys. 87, 5681 (1987).en_US
dc.identifier.citedreferenceH. G. Löhmannsröben and K. Luther, Chem. Phys. Lett. 144, 473 (1988); K. Luther and K. Reihs, Ber. Bunsenges. Phys. Chem. 92, 442 (1988); K. Luther (private communication).en_US
dc.identifier.citedreferenceT. J. Bevilacqua, B. K. Andrews, J. E. Stout, and R. B. Weisman, J. Chem. Phys. 92, 4627 (1990).en_US
dc.identifier.citedreferenceR. N. Schwartz, Z. I. Slawsky, and K. F. Herzfeld, J. Chem. Phys. 20, 1591 (1952).en_US
dc.identifier.citedreferenceF. I. Tanczos, J. Chem. Phys. 30, 1119 (1959).en_US
dc.identifier.citedreferenceJ. T. Yardley, Introduction to Molecular Energy Transfer (Academic, New York, 1980), Chap. 4.en_US
dc.identifier.citedreferenceFor a recent survey, see R. G. Gilbert and S. C. Smith, Theory of Unimolecular and Recombination Reactions (Blackwell Scientific, Oxford, 1990), Chap. 5.en_US
dc.identifier.citedreferenceH. W. Schranz and S. Nordholm, Int. J. Chem. Kinet. 13, 1051 (1981).en_US
dc.identifier.citedreferenceM. G. Sceats, J. Chem. Phys. 91, 6795 (1989); R. G. Hynes and M. G. Sceats, 91, 6804 (1989).en_US
dc.identifier.citedreferenceR. G. Gilbert, J. Chem. Phys. 80, 5501 (1984).en_US
dc.identifier.citedreferenceK. F. Lim and R. G. Gilbert, J. Chem. Phys. 84, 6129 (1986); 92, 1819 (1990).en_US
dc.identifier.citedreferenceB. M. Toselli and J. R. Barker, Chem. Phys. Lett. 174, 304 (1990).en_US
dc.identifier.citedreferenceK. F. Lim and R. G. Gilbert, J. Phys. Chem. 94, 72 (1990); 94, 77 (1990).en_US
dc.identifier.citedreferenceM. Bruehl and G. C. Schatz, J. Chem. Phys. 89, 770 (1988); J. Phys. Chem. 92, 7223 (1988).en_US
dc.identifier.citedreferenceS. Hassoon, I. Oref, and C. Steel, J. Chem. Phys. 89, 1743 (1988); I. M. Morgulis, S. S. Sapers, C. Steel, and I. Oref, 90, 923 (1989); A. Pashutzki and I. Oref, J. Phys. Chem. 92, 178 (1988).en_US
dc.identifier.citedreferenceG. Lendvay and G. C. Schatz, J. Phys. Chem. 94, 8864 (1990).en_US
dc.identifier.citedreferenceA. J. Sedlacek, R. E. Weston, Jr., and G. W. Flynn, J. Chem. Phys. (in press); and (personal communication).en_US
dc.identifier.citedreferenceC. S. Burton and W. A. Noyes, J. Chem. Phys. 49, 1705 (1968).en_US
dc.identifier.citedreferenceL. D. Brouwer, W. Müller-Markgraf, and J. Troe, J. Phys. Chem. 92, 4905 (1988).en_US
dc.identifier.citedreferenceT. G. Dietz, M. A. Duncan, and R. E. Smalley, J. Chem. Phys. 76, 1127 (1982).en_US
dc.identifier.citedreferenceJ. B. Birks, Organic Molecular Photophysics (Wiley, London, 1975), Vol. 2.en_US
dc.identifier.citedreferenceM. Jacon, C. Lardeux, R. Lopez-Delgado, and A. Tramer, Chem. Phys. 24, 145 (1977).en_US
dc.identifier.citedreferenceC. E. Otis, J. L. Knee, and P. M. Johnson, J. Phys. Chem. 87, 2232 (1983).en_US
dc.identifier.citedreferenceH. G. Lömannsröben, K. Luther, and M. Stuke, J. Phys. Chem. 91, 3499 (1987).en_US
dc.identifier.citedreferenceP. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), p. 237.en_US
dc.identifier.citedreferenceJ. F. Durana and J. D. McDonald, J. Chem. Phys. 64, 2518 (1976).en_US
dc.identifier.citedreferenceJ. A. Draeger, Spectrochim. Acta 41, 607 (1985); H. D. Rudolph, H. Dreizler, A. Jauschke, and P. Wendling, Z. Naturforsch. 22, 940 (1967).en_US
dc.identifier.citedreferenceS. E. Stein and B. S. Rabinovitch, J. Chem. Phys. 58, 2438 (1973).en_US
dc.identifier.citedreferenceT. Beyer and D. F. Swinehart, Commun. ACM 16, 379 (1973).en_US
dc.identifier.citedreferenceD. C. Astholz, J. Troe, and W. Wieters, J. Chem. Phys. 70, 5107 (1979).en_US
dc.identifier.citedreferenceA. P. Penner and W. Forst, J. Chem. Phys. 67, 5296 (1977).en_US
dc.identifier.citedreferenceY. N. Lin, S. C. Chan, and B. S. Rabinovich, J. Phys. Chem. 72, 1932 (1968).en_US
dc.identifier.citedreferenceG. Z. Whitten and B. S. Rabinovitch, J. Chem. Phys. 41, 1883 (1964).en_US
dc.identifier.citedreferenceW. Forst, Theory of Unimolecular Reactions (Academic, New York, 1973).en_US
dc.identifier.citedreferenceB. M. Toselli and J. R. Barker (unpublished).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.