Show simple item record

Laser cavity mirror imperfections and reflectivity: A time‐dependent numerical approach

dc.contributor.authorVurgaftman, Igoren_US
dc.contributor.authorSingh, Jaspriten_US
dc.date.accessioned2010-05-06T22:24:21Z
dc.date.available2010-05-06T22:24:21Z
dc.date.issued1995-01-16en_US
dc.identifier.citationVurgaftman, Igor; Singh, Jasprit (1995). "Laser cavity mirror imperfections and reflectivity: A time‐dependent numerical approach." Applied Physics Letters 66(3): 288-290. <http://hdl.handle.net/2027.42/70593>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70593
dc.description.abstractWhile the cleaving process used for semiconductor Fabry–Pérot lasers produces atomically abrupt mirrors, there is considerable interest in mirrors defined by etching. Depending on the etching process employed, disorder of varying nature and degree results at the semiconductor–air interface. A theoretical approach capable of quantifying the impact of such disorder on the mirror reflectivity, to which laser performance is intimately connected, is presented. The theoretical technique is time‐dependent to facilitate visualization of the scattering process and is based on a locally one‐dimensional implicit‐finite‐difference approximation to the two‐dimensional scalar wave equation with variable coefficients. Mirror disorder is described in terms of a feature depth parameter and an in‐plane correlation length. The reflectivity falls off exponentially with disorder yet is found to remain close to its unperturbed value for the disorder scale attainable with the state‐of‐the‐art etching technology. © 1995 American Institute of Physics.  en_US
dc.format.extent3102 bytes
dc.format.extent196375 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleLaser cavity mirror imperfections and reflectivity: A time‐dependent numerical approachen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSolid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109‐2122en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70593/2/APPLAB-66-3-288-1.pdf
dc.identifier.doi10.1063/1.113520en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceM. Wada, K. Hamada, T. Shibutani, H. Shimizu, M. Kume, K. Itoh, G. Kano, and I. Teramoto, IEEE J. Quantum Electron. IEJQA7INSQE-21, 658 (1985).en_US
dc.identifier.citedreferenceG. A. Vawter, L. A. Coldren, J. L. Merz, and E. L. Hu, Appl. Phys. Lett. APPLABAIP51, 719 (1987).en_US
dc.identifier.citedreferenceJ. Puretz, R. K. DeFreez, R. A. Elliott, and J. Orloff, Electron. Lett. ELLEAKINS22, 700 (1986).en_US
dc.identifier.citedreferenceP. Vettiger, M. K. Benedict, G.-L. Bona, P. Buchmann, E. C. Cahoon, K. Dätwyler, H.-P. Dietrich, A. Moser, H. K. Seitz, O. Voegeli, D. J. Webb, and P. Wolf, IEEE J. Quantum Electron. IEJQA7INSQE-27, 1319 (1991).en_US
dc.identifier.citedreferenceA. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 11.en_US
dc.identifier.citedreferenceJ. C. Strikwerda, Finite-Difference Schemes and Partial Differential Equations (Wadsworth and Brooks, Pacific Grove, CA, 1989), Chaps. 1–3.en_US
dc.identifier.citedreferenceA. R. Mitchell, Computational Methods in Partial Differential Equations (Wiley, New York, 1969), Chap. 5, Sec. 5.10.en_US
dc.identifier.citedreferenceJ. M. Ziman, Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Oxford University Press, New York, 1979), Chap. 3.en_US
dc.identifier.citedreferenceC. M. Herzinger, C. C. Lu, T. A. DeTemple, and W. C. Chew, IEEE J. Quantum Electron. IEJQA7INSQE-29, 2273 (1993).en_US
dc.identifier.citedreferenceN. C. Frateschi, M. Y. Jow, P. D. Dapkus, and A. F. J. Levi, Appl. Phys. Lett. APPLABAIP65, 1748 (1994).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.