Show simple item record

Built‐in biaxial strain dependence of Γ‐X transport in GaAs/InxAl1−xAs/GaAs pseudomorphic heterojunction barriers (x=0, 0.03, and 0.06)

dc.contributor.authorYang, K.en_US
dc.contributor.authorEast, Jack Royen_US
dc.contributor.authorHaddad, George I.en_US
dc.contributor.authorDrummond, Timothy J.en_US
dc.contributor.authorBrennan, T. M.en_US
dc.contributor.authorHammons, B. E.en_US
dc.date.accessioned2010-05-06T22:30:59Z
dc.date.available2010-05-06T22:30:59Z
dc.date.issued1994-12-15en_US
dc.identifier.citationYang, K.; East, J. R.; Haddad, G. I.; Drummond, T. J.; Brennan, T. M.; Hammons, B. E. (1994). "Built‐in biaxial strain dependence of Γ‐X transport in GaAs/InxAl1−xAs/GaAs pseudomorphic heterojunction barriers (x=0, 0.03, and 0.06)." Journal of Applied Physics 76(12): 7907-7914. <http://hdl.handle.net/2027.42/70663>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70663
dc.description.abstractThe effects of built‐in biaxial strain on Γ‐X transport in n‐GaAs/i‐InxAl1−xAs/n‐GaAs pseudomorphic single‐barrier structures (x=0, 0.03, and 0.06) are studied by measuring temperature‐dependent I‐V characteristics. For the accurate characterization of electron transport across each barrier, a self‐consistent numerical model is used to analyze the experimental results. For each structure, the four barrier parameters defined from the thermionic‐field‐emission theory, the effective Richardson constant A∗, the conduction‐band offsets ΔEc1,2, and a tunneling mass mn∗ are extracted by calculating the theoretical I‐V characteristics and fitting them to the experimental I‐V‐T data. The experimentally obtained X‐point conduction‐band shifts with the addition of indium are compared with the theoretical results calculated based on the model‐solid theory. The results indicate that the addition of indium not only splits the degenerate X minima of the InxAl1−xAs barrier, but also shifts the relative barrier heights of both longitudinal and transverse X valleys due to the alloy‐dependent band‐structure modification. The comparison between the experimental and theoretical results illustrates that the transverse X valleys are the main conduction channel for the Γ‐X transport across InxAl1−xAs pseudomorphic barriers. © 1994 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent1075861 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleBuilt‐in biaxial strain dependence of Γ‐X transport in GaAs/InxAl1−xAs/GaAs pseudomorphic heterojunction barriers (x=0, 0.03, and 0.06)en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCenter for High Frequency Microelectronics, Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109‐2122en_US
dc.contributor.affiliationotherSandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185‐1370en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70663/2/JAPIAU-76-12-7907-1.pdf
dc.identifier.doi10.1063/1.357901en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceL. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974).en_US
dc.identifier.citedreferenceS. Luryi, Appl. Phys. Lett. 47, 490 (1985).en_US
dc.identifier.citedreferenceT. C. L. G. Sollner, E. R. Brown, W. D. Goodhue, and H. Q. Le, Appl. Phys. Lett. 50, 332 (1987).en_US
dc.identifier.citedreferenceH. C. Liu and D. D. Coon, Appl. Phys. Lett. 50, 1246 (1987).en_US
dc.identifier.citedreferenceP. M. Solomon, S. L. Wright, and C. Lanza, Superlattices and Microelectronics 2, 521 (1986).en_US
dc.identifier.citedreferenceP. J. Price, Surf. Sci. 196, 394 (1988).en_US
dc.identifier.citedreferenceE. E. Mendez, E. Calleja, and W. I. Wang, Appl. Phys. Lett. 53, 977 (1988).en_US
dc.identifier.citedreferenceR. Beresford, L. F. Luo, W. I. Wang, and E. E. Mendez, Appl. Phys. Lett. 55, 1555 (1989).en_US
dc.identifier.citedreferenceD. Landheer, H. C. Liu, M. Buchanan, and R. Stoner, Appl. Phys. Lett. 54, 1784 (1989).en_US
dc.identifier.citedreferenceC. S. Kyono, V. P. Kesan, D. P. Neikirk, C. M. Maziar, and B. G. Streetman, Appl. Phys. Lett. 54, 549 (1989).en_US
dc.identifier.citedreferenceS. S. Lu, K. R. Lee, K. H. Lee, and M. I. Nathan, J. Appl. Phys. 67, 6360 (1990).en_US
dc.identifier.citedreferenceM. Rossmanith, J. Leo, and K. von Klitzing, J. Appl. Phys. 69, 3641 (1991).en_US
dc.identifier.citedreferenceJ. P. Sun, R. K. Mains, K. Yang, and G. I. Haddad, J. Appl. Phys. 74, 5053 (1993).en_US
dc.identifier.citedreferenceC. G. Van de Walle, Phys. Rev. B 39, 1871 (1989).en_US
dc.identifier.citedreferenceT. G. Anderson, Z. G. Chen, V. D. Kulakovskii, A. Uddin, and J. X. Vallin, Appl. Phys. Lett. 51, 752 (1987).en_US
dc.identifier.citedreferenceD. Arnold, A. Ketterson, T. Henderson, J. Klem, and H. Morkoc, J. Appl. Phys. 57, 2880 (1985).en_US
dc.identifier.citedreferenceA. R. Bonnefoi, D. H. Chow, T. C. McGill, R. D. Burnham, and F. A. Ponce, J. Vac. Sci. Technol. B 4, 988 (1986).en_US
dc.identifier.citedreferenceT. W. Hickmott and P. M. Solomon, J. Appl. Phys. 57, 2844 (1985).en_US
dc.identifier.citedreferenceC. B. Duke, Tunneling in Solids (Academic, New York, 1969), p. 59.en_US
dc.identifier.citedreferenceN. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y. C. Chang, and H. Morkoç, Phys. Rev. B 30, 4481 (1984).en_US
dc.identifier.citedreferenceA. R. Bonnefoi, D. H. Chow, and T. C. McGill, J. Appl. Phys. 62, 3836 (1987).en_US
dc.identifier.citedreferenceB. Zimmermann, E. Marclay, M. Iiegems, and P. Gueret, J. Appl. Phys. 64, 3581 (1988).en_US
dc.identifier.citedreferenceK. Yang, J. R. East, and G. I. Haddad, Solid-State Electron. 36, 321 (1993).en_US
dc.identifier.citedreferenceH. C. Casey, Jr. and M. B. Panish, Heterostructure Lasers (Academic, New York, 1978).en_US
dc.identifier.citedreferenceJ. Batey and S. L. Wright, J. Appl. Phys. 59, 200 (1986).en_US
dc.identifier.citedreferenceS. Adachi, J. Appl. Phys. 58, R1 (1985).en_US
dc.identifier.citedreferenceJ. N. Schulman and Y. C. Chang, Phys. Rev. B 24, 4445 (1981).en_US
dc.identifier.citedreferenceG. Brozak, F. DeRosa, D. M. Hwang, P. Miceli, S. A. Schwartz, J. P. Harbison, L. T. Florez, and S. J. Allen, Jr., Surf. Sci. 229, 493 (1990).en_US
dc.identifier.citedreferenceW. Braun and K. H. Ploog, J. Appl. Phys. 75, 1993 (1994).en_US
dc.identifier.citedreferenceJ. Nagle, J. P. Landesman, M. Larive, C. Mottet, and P. Bois, J. Cryst. Growth 127, 550 (1993).en_US
dc.identifier.citedreferenceE. E. Mendez, E. Calleja, and W. I. Wang, Phys. Rev. B 34, 6026 (1986).en_US
dc.identifier.citedreferenceThe bowing parameter was determined by a quadratic fit of EgX(x)EgX(x) to a crossover energy between EgΓ(x)EgΓ(x) and EgX(x)EgX(x) of InxAl1−xAsInxAl1−xAs reported by M. R. Lorenz and A. Onton, in Proceedings of the 10th International Conference on the Physics of Semiconductors, 1970, p. 444.en_US
dc.identifier.citedreferenceT. J. Drummond, E. D. Jones, H. P. Hjalmarson, and B. L. Doyle, Proc. SPIE, 796, 2 (1987).en_US
dc.identifier.citedreferenceR. People, K. W. Wecht, K. Alavi, and A. Y. Cho, Appl. Phys. Lett. 43, 118 (1983).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.