Show simple item record

Quantum chemical studies of carbon-13 equilibrium fractionation in ion–molecule reactions

dc.contributor.authorLohr, Lawrence L. Jr.en_US
dc.date.accessioned2010-05-06T22:32:31Z
dc.date.available2010-05-06T22:32:31Z
dc.date.issued1998-05-15en_US
dc.identifier.citationLohr, Lawrence L. (1998). "Quantum chemical studies of carbon-13 equilibrium fractionation in ion–molecule reactions." The Journal of Chemical Physics 108(19): 8012-8019. <http://hdl.handle.net/2027.42/70679>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70679
dc.description.abstractAb initio computational quantum chemical methods are used to calculate reduced partition function ratios for all isotopomers of CO, HCO+,HCO+, and HOC+HOC+ involving the nuclides 1H,1H, 2H2H (D), 12C,12C, 13C,13C, 16O,16O, and 18O.18O. The ratios are used to calculate equilibrium constants for the reaction pairs HCO+/CO,HCO+/CO, HOC+/CO,HOC+/CO, and C+/CO.C+/CO. Both simple proton transfers and more complex isotopic variants involving the breaking and reforming of CO bonds are considered. The probable pathways for the HCO+/COHCO+/CO and C+/COC+/CO exchange reactions are explored in detail using high-accuracy quantum chemical calculations. It appears most likely that the HCO+/COHCO+/CO reaction proceeds through exothermic formation of the linear adduct OCHCO+OCHCO+ with D∞hD∞h symmetry. Similarly, the C+/COC+/CO reaction proceeds along a spin-allowed pathway with exothermic formation of the linear adduct COC+COC+ with D∞hD∞h symmetry. An alternate but higher energy spin-allowed pathway for the C+/COC+/CO reaction passes through a transition state with only CsCs symmetry and a locally stable intermediate with C2vC2v symmetry. In the ISM these reactions may proceed by these direct pathways or indirectly through coupled exothermic reaction pairs involving other species to achieve 13C/12C13C/12C isotope exchange. © 1998 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent164516 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleQuantum chemical studies of carbon-13 equilibrium fractionation in ion–molecule reactionsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70679/2/JCPSA6-108-19-8012-1.pdf
dc.identifier.doi10.1063/1.476240en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceH. C. Urey, J. Chem. Soc. JCSOA91947, 562.en_US
dc.identifier.citedreferenceH. Craig, Geochim. Cosmochim. Acta GCACAK6, 186 (1957); also see G. Faure, Principles of Isotope Geology, 2nd ed. (Wiley, New York, 1986), pp. 491–512.en_US
dc.identifier.citedreferenceY. Bottinga, J. Phys. Chem. JPCHAX72, 800 (1968).en_US
dc.identifier.citedreferenceY. Bottinga, Geochim. Cosmochim. Acta GCACAK33, 49 (1969).en_US
dc.identifier.citedreferenceY. Bottinga, Earth Planet. Sci. Lett. EPSLA25, 301 (1969).en_US
dc.identifier.citedreferenceY. Bottinga and H. Craig, Earth Planet. Sci. Lett. EPSLA25, 285 (1969).en_US
dc.identifier.citedreferenceP. Richet, Y. Bottinga, and M. Javoy, Annu. Rev. Earth Planet Sci. AREPCI5, 65 (1977).en_US
dc.identifier.citedreferenceJ. Bigeleisen, M. W. Lee, and F. Mandel, Annu. Rev. Phys. Chem. ARPLAP24, 407 (1973).en_US
dc.identifier.citedreferenceW. D. Watson, Rev. Mod. Phys. RMPHAT48, 513 (1976); also see W. D. Watson, Topics in Interstellar Matter, edited by H. van Woerden (Reidel, Dordrecht, 1977), pp. 135–147; W. D. Watson, Interstellar Molecules, edited by B. H. Andrew (Reidel, Dordrecht, 1980), pp. 341–353.en_US
dc.identifier.citedreferenceD. Smith and N. G. Adams, Astrophys. J. ASJOAB242, 424 (1980).en_US
dc.identifier.citedreferenceS. Wyckoff, E. Lindholm, P. A. Wehinger, B. A. Peterson, J.-M. Zucconi, and M. C. Festou, Astrophys. J. ASJOAB339, 488 (1989).en_US
dc.identifier.citedreferenceG. J. White and G. Sandell, Astron. Astrophys. AAEJAF299, 179 (1995).en_US
dc.identifier.citedreferenceS. J. Mojzsis, G. Arrhenius, K. D. McKeegan, T. M. Harrison, A. P. Nutman, and C. R. L. Friend, Nature (London) NATUAS384, 55 (1996).en_US
dc.identifier.citedreferenceD. S. McKay, E. K. Gibson, Jr., K. L. Thomas-Keprta, H. Vali, C. S. Romanek, S. J. Clemett, X. D. F. Chillier, C. R. Maechling, and R. N. Zare, Science SCIEAS273, 924 (1996); for different conclusions about the same Martian meteorite (ALH84001) see R. P. Harvey and H. Y. McSween, Jr., Nature (London) NATUAS382, 49 (1996).en_US
dc.identifier.citedreferenceC. H. Townes, Topics in Interstellar Matter, edited by H. van Woerden (Reidel, Dordrecht, 1977), pp. 113–123.en_US
dc.identifier.citedreferenceP. G. Wannier, Annu. Rev. Astron. Astrophys. ARAAAJ18, 399 (1980).en_US
dc.identifier.citedreferenceE. Herbst and W. Klemperer, Astrophys. J. ASJOAB185, 505 (1973); 188, 255 (1974).en_US
dc.identifier.citedreferenceS. Green, Annu. Rev. Phys. Chem. ARPLAP32, 103 (1981).en_US
dc.identifier.citedreferenceD. Smith and N. G. Adams, Int. Rev. Phys. Chem. IRPCDL1, 271 (1981).en_US
dc.identifier.citedreferenceH. W. Kroto, Int. Rev. Phys. Chem. IRPCDL1, 309 (1981).en_US
dc.identifier.citedreferenceA. Dalgarno, J. Chem. Soc., Faraday Trans. JCFTEV89, 2111 (1993).en_US
dc.identifier.citedreferenceC. R. Cowley, An Introduction to Cosmochemistry (Cambridge University Press, Cambridge, 1995), pp. 125–149.en_US
dc.identifier.citedreferenceW. D. Langer and A. A. Penzias, Astrophys. J. ASJOAB357, 477 (1990); 408, 539 (1993).en_US
dc.identifier.citedreferenceT. Xie, M. Allen, and W. D. Langer, Astrophys. J. ASJOAB440, 674 (1995).en_US
dc.identifier.citedreferenceR. P. A. Bettens and E. Herbst, Astrophys. J. ASJOAB468, 686 (1996); 478, 585 (1997).en_US
dc.identifier.citedreferenceT. L. Wilson and R. T. Rood, Annu. Rev. Astron. Astrophys. ARAAAJ32, 191 (1994).en_US
dc.identifier.citedreferenceB. E. Turner, Astrophys. J. ASJOAB468, 694 (1996).en_US
dc.identifier.citedreferenceGAUSSIAN 94, Revision B.3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople (Gaussian, Inc., Pittsburgh, 1995).en_US
dc.identifier.citedreferenceA. J. Apponi and L. M. Ziurys, Astrophys. J. ASJOAB481, 800 (1997).en_US
dc.identifier.citedreferenceE. J. Bielske, S. A. Nizkorodov, F. R. Bennett, and J. P. Maier, J. Chem. Phys. JCPSA6102, 5152 (1995).en_US
dc.identifier.citedreferenceN. N. Haese and R. C. Woods, Chem. Phys. Lett. CHPLBC91, 190 (1982).en_US
dc.identifier.citedreferenceR. G. A. R. Maclagan and P. Sudkeaw, J. Chem. Soc., Faraday Trans. JCFTEV89, 3325 (1993).en_US
dc.identifier.citedreferenceR. Flammang, Y. V. Haverbeke, M. W. Wong, A. Rühmann, and C. Wentrup, J. Phys. Chem. JPCHAX98, 4814 (1994).en_US
dc.identifier.citedreferenceZ. Cao and A. Tian, J. Mol. Struct.: THEOCHEM THEODJ334, 45 (1995).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.