Show simple item record

Raster-scan imaging with normal-incidence, midinfrared InAs/GaAs quantum dot infrared photodetectors

dc.contributor.authorStiff-Roberts, A. D.en_US
dc.contributor.authorChakrabarti, S.en_US
dc.contributor.authorPradhan, S.en_US
dc.contributor.authorKochman, Boazen_US
dc.contributor.authorBhattacharya, Pallab K.en_US
dc.date.accessioned2010-05-06T22:33:39Z
dc.date.available2010-05-06T22:33:39Z
dc.date.issued2002-05-06en_US
dc.identifier.citationStiff-Roberts, A. D.; Chakrabarti, S.; Pradhan, S.; Kochman, B.; Bhattacharya, P. (2002). "Raster-scan imaging with normal-incidence, midinfrared InAs/GaAs quantum dot infrared photodetectors." Applied Physics Letters 80(18): 3265-3267. <http://hdl.handle.net/2027.42/70691>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70691
dc.description.abstractWe demonstrate normal incidence infrared imaging with quantum dot infrared photodetectors using a raster-scan technique. The device heterostructure, containing multiple layers of InAs/GaAs self-organized quantum dots, were grown by molecular-beam epitaxy. Individual devices have been operated at temperatures as high as 150 K and, at 100 K, are characterized by λpeak = 3.72 μm,λpeak=3.72μm, Jdark = 6×10−10 A/cm2Jdark=6×10−10A/cm2 for a bias of 0.1 V, and D∗ = 2.94×109 cm Hz1/2/WD∗=2.94×109cmHz1/2/W at a bias of 0.2 V. Raster-scan images of heated objects and infrared light sources were obtained with a small (13×13)(13×13) interconnected array of detectors (to increase the photocurrent) at 80 K. © 2002 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent274839 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleRaster-scan imaging with normal-incidence, midinfrared InAs/GaAs quantum dot infrared photodetectorsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSolid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70691/2/APPLAB-80-18-3265-1.pdf
dc.identifier.doi10.1063/1.1476387en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceK. W. Berryman, S. A. Lyon, and M. Segev, Appl. Phys. Lett. APPLAB70, 1861 (1997).en_US
dc.identifier.citedreferenceJ. Phillips, K. Kamath, and P. Bhattacharya, Appl. Phys. Lett. APPLAB72, 2020 (1998).en_US
dc.identifier.citedreferenceS. Maimon, E. Finkman, and G. Bahir, Appl. Phys. Lett. APPLAB73, 2003 (1998).en_US
dc.identifier.citedreferenceD. Pan, E. Towe, and S. Kennerly, Appl. Phys. Lett. APPLAB73, 1937 (1998).en_US
dc.identifier.citedreferenceJ. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta, IEEE J. Quantum Electron. IEJQA735, 936 (1999).en_US
dc.identifier.citedreferenceS. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, Appl. Phys. Lett. APPLAB78, 1023 (2001).en_US
dc.identifier.citedreferenceA. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, Appl. Phys. Lett. APPLAB79, 21 (2001).en_US
dc.identifier.citedreferenceA. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, IEEE J. Quantum Electron. IEJQA737, 1412 (2001).en_US
dc.identifier.citedreferenceD. Klotzkin, K. Kamath, and P. Bhattacharya, IEEE Photonics Technol. Lett. IPTLEL9, 1301 (1997).en_US
dc.identifier.citedreferenceJ. Urayama, T. B. Norris, J. Singh, and P. Bhattacharya, Phys. Rev. Lett. PRLTAO86, 4930 (2001).en_US
dc.identifier.citedreferenceV. Ryzhii, Semicond. Sci. Technol. SSTEET11, 759 (1996).en_US
dc.identifier.citedreferenceH. C. Liu, M. Buchanan, J. Li, Z. R. Wasilewski, P. H. Wilson, P. A. Marshall, R. A. Barber, P. Chow-Chong, J. W. Fraser, and J. Stapledon, Applications of Photonic Technology 2, edited by G. A. Lampropoulos and R. A. Lessard (Plenum, New York, 1997), pp. 311–318.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.