Show simple item record

Lattice matched and pseudomorphic In0.53Ga0.47As/InxAl1−x As resonant tunneling diodes with high current peak‐to‐valley ratio for millimeter‐wave power generation

dc.contributor.authorMehdi, Imranen_US
dc.contributor.authorHaddad, George I.en_US
dc.date.accessioned2010-05-06T22:36:00Z
dc.date.available2010-05-06T22:36:00Z
dc.date.issued1990-03-01en_US
dc.identifier.citationMehdi, Imran; Haddad, George (1990). "Lattice matched and pseudomorphic In0.53Ga0.47As/InxAl1−x As resonant tunneling diodes with high current peak‐to‐valley ratio for millimeter‐wave power generation." Journal of Applied Physics 67(5): 2643-2646. <http://hdl.handle.net/2027.42/70716>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70716
dc.description.abstractLattice matched and pseudomorphic In0.53 Ga0.47 As/InxAl1−x As resonant tunneling diodes, with some of the best dc performance ever reported, have been fabricated and their high‐frequency power generation capabilities have been theoretically studied. For the lattice matched system a peak‐to‐valley ratio of 7 (300 K) and 21 (77 K) with a peak current density of approximately 10 kA/cm2 is measured. The pseudomorphic system with a In0.53 Ga0.47 As well and AlAs barriers results in a peak‐to‐valley ratio of 24 (300 K) and 51 (77 K) with a peak current density of approximately 15 kA/cm2. Based on a quasistatic large signal waveform analysis the power generating capability of the InGaAs device is compared with a GaAs based device with an equally high peak current density and it is found that for very high‐frequency power applications the InGaAs based device is better.en_US
dc.format.extent3102 bytes
dc.format.extent583970 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleLattice matched and pseudomorphic In0.53Ga0.47As/InxAl1−x As resonant tunneling diodes with high current peak‐to‐valley ratio for millimeter‐wave power generationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCenter for High‐Frequency Microelectronics, Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70716/2/JAPIAU-67-5-2643-1.pdf
dc.identifier.doi10.1063/1.345472en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceT. C. L. G. Sollner, P. E. Tannenwald, D. D. Peck, and W. D. Goodhue, Appl. Phys. Lett. 45, 1319 (1984).en_US
dc.identifier.citedreferenceC. I. Huang, M. J. Paulus, C. A. Bozada, S. C. Dudley, K. R. Evans, C. E. Stutz, R. L. Hones, and M. E. Cheney, Appl. Phys. Lett. 51, 121 (1987).en_US
dc.identifier.citedreferenceW. D. Goodhue, T. C. L. G. Sollner, H. Q. Lee, E. R. Brown, and B. A. Vojak, Appl. Phys. Lett. 49, 1086 (1986).en_US
dc.identifier.citedreferenceM. Tsuchiya and H. Sakaki, Jpn. J. Appl. Phys. 25, L185 (1986).en_US
dc.identifier.citedreferenceY. Sugiyama, T. Inata, S. Muto, Y. Nakata, and S. Hiyamizu, Appl. Phys. Lett. 52, 314 (1988).en_US
dc.identifier.citedreferenceA. A. Lakhani, R. C. Potter, D. Beyea, H. H. Hier, E. Hempfling, L. Dina, and J. M. O’Conner, Electron. Lett. 24, 153 (1988).en_US
dc.identifier.citedreferenceT. Inata, S. Muto, Y. Nakata, T. Fujii, H. Ohniski, and S. Hiyamizu, Jpn. J. Appl. Phys. 25, L983 (1986).en_US
dc.identifier.citedreferenceT. Inata, S. Muto, Y. Nakata, S. Sasa, T. Fujii, and S. Hiyamizu, Jpn. J. Appl. Phys. 26, L1332 (1987).en_US
dc.identifier.citedreferenceT. P. E. Broekaert, W. Lee, and C. G. Fonstad, Appl. Phys. Lett. 53, 1545 (1988).en_US
dc.identifier.citedreferenceS. Muto, T. Inata, H. Ohnishi, N. Yokiyama, and S. Hiyamizu, Jpn. J. Appl. Phys. 25, L577 (1986).en_US
dc.identifier.citedreferenceS. Muto, T. Inata, Y. Sugiyama, Y. Nakata, T. Fujii, and S. Hiyamizu, Jpn. J. Appl. Phys. 26, L220 (1987).en_US
dc.identifier.citedreferenceM. Tsuchiya and H. Sakaki, Appl. Phys. Lett. 49, 88 (1986).en_US
dc.identifier.citedreferenceE. E. Mendez, E. Calleja, and W. I. Wang, Appl. Phys. Lett. 53, 977 (1988).en_US
dc.identifier.citedreferenceJ. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974).en_US
dc.identifier.citedreferenceV. P. Kesan, D. P. Neikirk, P. A. Blakey, B. G. Streetman, and T. D. Linton, Jr., IEEE Trans. Electron Devices 35, 405 (1988).en_US
dc.identifier.citedreferenceJ. F. Young, B. M. Wood, H. C. Liu, M. Cuchanan, D. Landheer, A. J. SpringThorpe, and P. Mandeville, Appl. Phys. Lett. 52, 1398 (1988).en_US
dc.identifier.citedreferenceH. J. Oguey, IEEE Trans. Microwave Theory and Tech. MTT‐11, 412 (1963).en_US
dc.identifier.citedreferenceR. K. Mains and G. I. Haddad, J. Appl. Phys. 64, 3564 (1988).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.