Show simple item record

Role of kinetics and thermodynamics in alloy clustering and surface quality in InAlAs grown by molecular‐beam epitaxy: Consequences for optical and transport properties

dc.contributor.authorSingh, Jaspriten_US
dc.contributor.authorDudley, S.en_US
dc.contributor.authorDavies, B.en_US
dc.contributor.authorBajaj, K. K.en_US
dc.date.accessioned2010-05-06T22:36:06Z
dc.date.available2010-05-06T22:36:06Z
dc.date.issued1986-11-01en_US
dc.identifier.citationSingh, Jasprit; Dudley, S.; Davies, B.; Bajaj, K. K. (1986). "Role of kinetics and thermodynamics in alloy clustering and surface quality in InAlAs grown by molecular‐beam epitaxy: Consequences for optical and transport properties." Journal of Applied Physics 60(9): 3167-3171. <http://hdl.handle.net/2027.42/70717>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70717
dc.description.abstractWe present results of a Monte Carlo computer simulation which was carried out to understand the molecular‐beam epitaxial (MBE) growth of InAlAs. We focus on developing an understanding of the role of growth conditions on the short‐range order (alloy clustering) in the system as well as the quality of the growth front during growth. We find that for common anion alloy systems for which thermodynamics favor phase separation, the conditions for high‐quality alloy and high‐quality surfaces (and heterointerfaces) are incompatible if the conventional MBE growth approach is used. We also examine the effect of the alloy clustering on the optical and transport properties of InAlAs.en_US
dc.format.extent3102 bytes
dc.format.extent586902 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleRole of kinetics and thermodynamics in alloy clustering and surface quality in InAlAs grown by molecular‐beam epitaxy: Consequences for optical and transport propertiesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherAir Force Wright Aeronautical Laboratories, Avionics Laboratory (AFWAL/AADR), Wright Patterson Air Force Base, Ohio 45433en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70717/2/JAPIAU-60-9-3167-1.pdf
dc.identifier.doi10.1063/1.337730en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceC. E. C. Wood, in Physics of Thin Films, edited by G. Hass and M. Francombe (Academic, New York, 1980), Vol. 11, p. 35.en_US
dc.identifier.citedreferenceSee for example, articles published in Proceedings of the International Conference of Metalorganic Vapor Phase Epitaxy, edited by J. F. Bonfils, S. J. Irvine, and J. B. Mullin (North‐Holland, Amsterdam, 1981).en_US
dc.identifier.citedreferenceC. Weisbuch, R. Dingle, P. M. Petroff, A. C. Gossard, and W. Weigman, Appl. Phys. Lett. 38, 840 (1981).en_US
dc.identifier.citedreferenceD. C. Reynolds, K. K. Bajaj, C. W. Litton, P. W. Yu, J. Singh, W. T. Masselink, R. Fischer, and H. Morkoç, Appl. Phys. Lett. 46, 51 (1985).en_US
dc.identifier.citedreferenceH. Ohno, C. E. C. Wood, L. Rathbun, D. V. Morgan, G. W. Wicks, and C. F. Eastman, J. Appl. Phys. 52, 4033 (1981).en_US
dc.identifier.citedreferenceT. P. Pearsall, G. Beuchek, J. P. Hintz, N. Visentin, M. Bonnet, and A. Roizes, in GaAs and Related Compounds, edited by H. W. Thim (Inst. Phys. Conf. Ser. No. 56, Bristol, 1981), p. 639.en_US
dc.identifier.citedreferenceD. F. Welch, G. W. Wicks, and L. F. Eastman, Appl. Phys. Lett. 43, 762 (1983).en_US
dc.identifier.citedreferenceK. Y. Cheng, A. Y. Cho, T. J. Drummond, and H. Morkoç, Appl. Phys. Lett. 40, 147 (1982).en_US
dc.identifier.citedreferenceP. K. Bhattacharya (private communication).en_US
dc.identifier.citedreferenceK. Najajima, T. Tanahashi, and K. Akita, Appl. Phys. Lett. 41, 194 (1982).en_US
dc.identifier.citedreferenceJ. W. Christian, The Theory of Transformations in Metals and Alloys (Pergamon, New York, 1965).en_US
dc.identifier.citedreferenceJ. Singh and K. K. Bajaj, J. Vac. Sci. Technol. B 2, 276 (1984).en_US
dc.identifier.citedreferenceJ. Singh and K. K. Bajaj, J. Vac. Sci. Technol. B 3, 576 (1984).en_US
dc.identifier.citedreferenceJ. Singh and K. K. Bajaj, and S. Dudley, J. Vac. Sci. Technol. B 4, 558 (1986).en_US
dc.identifier.citedreferenceS. Nagata and T. Taneke, J. Appl. Phys. 48, 950 (1977).en_US
dc.identifier.citedreferenceJ. Singh and K. K. Bajaj, Appl. Phys. Lett. 44, 1075 (1984). Also, J. Singh and K. K. Bajaj, Appl. Phys. Lett. 48, 1077 (1986).en_US
dc.identifier.citedreferenceJ. W. Harrison and J. R. Hauser, J. Appl. Phys. 47, 292 (1976).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.