Show simple item record

A kinetic Monte Carlo method for the atomic-scale simulation of chemical vapor deposition: Application to diamond

dc.contributor.authorBattaile, Corbett C.en_US
dc.contributor.authorSrolovitz, David J.en_US
dc.contributor.authorButler, J. E.en_US
dc.date.accessioned2010-05-06T22:39:13Z
dc.date.available2010-05-06T22:39:13Z
dc.date.issued1997-12-15en_US
dc.identifier.citationBattaile, C. C.; Srolovitz, D. J.; Butler, J. E. (1997). "A kinetic Monte Carlo method for the atomic-scale simulation of chemical vapor deposition: Application to diamond." Journal of Applied Physics 82(12): 6293-6300. <http://hdl.handle.net/2027.42/70750>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70750
dc.description.abstractWe present a method for simulating the chemical vapor deposition (CVD) of thin films. The model is based upon a three-dimensional representation of film growth on the atomic scale that incorporates the effects of surface atomic structure and morphology. Film growth is simulated on lattice. The temporal evolution of the film during growth is examined on the atomic scale by a Monte Carlo technique parameterized by the rates of the important surface chemical reactions. The approach is similar to the N-fold way in that one reaction occurs at each simulation step, and the time increment between reaction events is variable. As an example of the application of the simulation technique, the growth of {111}-oriented diamond films was simulated for fifteen substrate temperatures ranging from 800 to 1500 K. Film growth rates and incorporated vacancy and H atom concentrations were computed at each temperature. Under typical CVD conditions, the simulated growth rates vary from about 0.1 to 0.8 μm/hr between 800 and 1500 K and the activation energy for growth on the {111}: H surface between 800 and 1100 K is 11.3 kcal/mol. The simulations predict that the concentrations of incorporated point defects are low at substrate temperatures below 1300 K, but become significant above this temperature. If the ratio between growth rate and point defect concentration is used as a measure of growth efficiency, ideal substrate temperatures for the growth of {111}-oriented diamond films are in the vicinity of 1100 to 1200 K. © 1997 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent559561 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleA kinetic Monte Carlo method for the atomic-scale simulation of chemical vapor deposition: Application to diamonden_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherGas/Surface Dynamics Section, Code 6174, Naval Research Laboratory, Washington, D.C. 20375en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70750/2/JAPIAU-82-12-6293-1.pdf
dc.identifier.doi10.1063/1.366532en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceR. C. DeVries, Annu. Rev. Mater. Sci. ARMSCX17, 161 (1987).en_US
dc.identifier.citedreferenceK. E. Spear, J. Am. Ceram. Soc. JACTAW72, 171 (1989).en_US
dc.identifier.citedreferenceF. G. Celii and J. E. Butler, Annu. Rev. Phys. Chem. ARPLAP42, 643 (1991).en_US
dc.identifier.citedreferenceJ. E. Butler and R. L. Woodin, Philos. Trans. R. Soc. London, Ser. A PTRMAD342, 209 (1993).en_US
dc.identifier.citedreferenceD. G. Goodwin and J. E. Butler, in Handbook of Industrial Diamonds and Diamond Films, edited by M. A. Prelas, G. Popovici, and L. K. Bigelow (Dekker, New York, 1997), pp. 527–582.en_US
dc.identifier.citedreferenceF. G. Celii, P. E. Pehrsson, H.-t. Wang, and J. E. Butler, Appl. Phys. Lett. APPLAB54, 2043 (1988).en_US
dc.identifier.citedreferenceC.-H. Wu, M. A. Tamor, T. J. Potter, and E. W. Kaiser, J. Appl. Phys. JAPIAU68, 4825 (1990).en_US
dc.identifier.citedreferenceW. L. Hsu, Appl. Phys. Lett. APPLAB59, 1427 (1991).en_US
dc.identifier.citedreferenceD. W. Brenner, Phys. Rev. B PRBMDO42, 9458 (1990).en_US
dc.identifier.citedreferenceB. J. Garrison, E. J. Dawnkaski, D. Srivastava, and D. W. Brenner, Science SCIEAS255, 835 (1992).en_US
dc.identifier.citedreferenceD. Huang and M. Frenklach, J. Phys. Chem. JPCHAX96, 1868 (1992).en_US
dc.identifier.citedreferenceV. I. Gavrilenko, Phys. Rev. B PRBMDO47, 9556 (1993).en_US
dc.identifier.citedreferenceY. L. Yang and M. P. D’Evelyn, J. Am. Chem. Soc. JACSAT114, 2796 (1992).en_US
dc.identifier.citedreferenceT. Frauenheim, U. Stephan, P. Blaudeck, D. Porezag, H.-G. Busmann, W. Zimmermann-Edling, and S. Lauer, Phys. Rev. B PRBMDO48, 18189 (1993).en_US
dc.identifier.citedreferenceZ. Jing and J. L. Whitten, Surf. Sci. SUSCAS314, 300 (1994).en_US
dc.identifier.citedreferenceS. Skokov, C. S. Carmer, B. Weiner, and M. Frenklach, Phys. Rev. B PRBMDO49, 5662 (1994).en_US
dc.identifier.citedreferenceS. Ciraci and I. P. Batra, Phys. Rev. B PLRBAQ15, 3254 (1977).en_US
dc.identifier.citedreferenceS. H. Yang, D. A. Drabold, and J. B. Adams, Phys. Rev. B PRBMDO48, 5261 (1993).en_US
dc.identifier.citedreferenceB. N. Davidson and W. E. Pickett, Phys. Rev. B PRBMDO49, 11253 (1994).en_US
dc.identifier.citedreferenceM. Frenklach and H. Wang, Phys. Rev. B PRBMDO43, 1520 (1991).en_US
dc.identifier.citedreferenceS. J. Harris and D. G. Goodwin, J. Phys. Chem. JPCHAX97, 23 (1993).en_US
dc.identifier.citedreferenceM. E. Coltrin and D. S. Dandy, J. Appl. Phys. JAPIAU74, 5803 (1993).en_US
dc.identifier.citedreferenceD. S. Dandy and M. E. Coltrin, J. Mater. Res. JMREEE10, 1993 (1995).en_US
dc.identifier.citedreferenceM. O. Kaukonen and R. M. Nieminen, Surf. Sci. SUSCAS331–3, 975 (1995).en_US
dc.identifier.citedreferenceE. J. Dawnkaski, D. Srivastava, and B. J. Garrison, J. Chem. Phys. JCPSA6104, 5997 (1996).en_US
dc.identifier.citedreferenceM. M. Clark, L. M. Raff, and H. L. Scott, Comput. Phys. CPHYE210, 584 (1996).en_US
dc.identifier.citedreferenceC. C. Battaile, D. J. Srolovitz, and J. E. Butler, Diamond Relat. Mater. (in press).en_US
dc.identifier.citedreferenceA. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comp. Physiol. JRCPA317, 10 (1975).en_US
dc.identifier.citedreferenceG. N. Hassold and E. A. Holm, Comput. Phys. CPHYE27, 97 (1993).en_US
dc.identifier.citedreferenceK. A. Fichthorn and W. H. Weinberg, J. Chem. Phys. JCPSA695, 1090 (1991).en_US
dc.identifier.citedreferenceR. Locher, C. Wild, N. Herres, D. Behr, and P. Koidl, Appl. Phys. Lett. APPLAB65, 34 (1994).en_US
dc.identifier.citedreferenceJ. S. Kim and M. A. Cappelli, J. Mater. Res. JMREEE10, 149 (1995).en_US
dc.identifier.citedreferenceR. E. Rawles, W. G. Morris, and M. P. D’Evelyn, in Diamond for Electronic Applications, Boston, MA, edited by D. L. Dreifus, A. Collins, T. Humphreys, K. Das, and P. E. Pehrsson, Mater. Res. Soc. Symp. Proc. MRSPDH416 (Materials Research Society, Pittsburgh, 1996), pp. 13–18.en_US
dc.identifier.citedreferenceY. L. Yang, L. M. Struck, L. F. Sutcu, and M. P. D’Evelyn, Thin Solid Films THSFAP225, 203 (1993).en_US
dc.identifier.citedreferenceB. D. Thoms, J. N. Russell, Jr., P. E. Pehrsson, and J. E. Butler, J. Chem. Phys. JCPSA6100, 8425 (1994).en_US
dc.identifier.citedreferenceD. D. Koleske, S. M. Gates, B. D. Thoms, J. N. Russell, Jr., and J. E. Butler, J. Chem. Phys. JCPSA6102, 992 (1995).en_US
dc.identifier.citedreferenceS. J. Harris and D. N. Belton, Jpn. J. Appl. Phys., Part I JAPNDE30, 2615 (1991).en_US
dc.identifier.citedreferenceS. Skokov, B. Weiner, and M. Frenklach, J. Phys. Chem. JPCHAX99, 5616 (1995).en_US
dc.identifier.citedreferenceN. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. JCPSA621, 1087 (1953).en_US
dc.identifier.citedreferenceS. J. Harris, Appl. Phys. Lett. APPLAB56, 2298 (1990).en_US
dc.identifier.citedreferenceB. D. Thoms, M. S. Owens, J. E. Butler, and C. Sprio, Appl. Phys. Lett. APPLAB65, 2957 (1994).en_US
dc.identifier.citedreferenceB. D. Thoms and J. E. Butler, Surf. Sci. SUSCAS328, 291 (1995).en_US
dc.identifier.citedreferenceS. J. Harris and A. M. Weiner, Appl. Phys. Lett. APPLAB53, 1605 (1988).en_US
dc.identifier.citedreferenceS. J. Harris and A. M. Weiner, J. Appl. Phys. JAPIAU67, 6520 (1990).en_US
dc.identifier.citedreferenceF. G. Celii and J. E. Butler, J. Appl. Phys. JAPIAU71, 2877 (1992).en_US
dc.identifier.citedreferenceD. S. Dandy and M. E. Coltrin, J. Appl. Phys. JAPIAU76, 3102 (1994).en_US
dc.identifier.citedreferenceC. J. Chu, R. H. Hauge, J. L. Margrave, and M. P. D’Evelyn, Appl. Phys. Lett. APPLAB61, 1393 (1992).en_US
dc.identifier.citedreferenceC. Battaile, D. J. Srolovitz, and J. E. Butler, in Thin Films: Surface and Morphology, Boston, MA, edited by R. Cammarata, E. Chason, T. Einstein, , and E. Williams, Mater. Res. Soc. Symp. Proc. MRSPDH441 (Materials Research Society, Pittsburgh, 1997), pp. 509–514.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.