Show simple item record

Biomolecule-directed assembly of nanoscale building blocks studied via lattice Monte Carlo simulation

dc.contributor.authorChen, Tingen_US
dc.contributor.authorLamm, Monica H.en_US
dc.contributor.authorGlotzer, Sharon C.en_US
dc.date.accessioned2010-05-06T22:45:06Z
dc.date.available2010-05-06T22:45:06Z
dc.date.issued2004-08-22en_US
dc.identifier.citationChen, Ting; Lamm, Monica H.; Glotzer, Sharon C. (2004). "Biomolecule-directed assembly of nanoscale building blocks studied via lattice Monte Carlo simulation." The Journal of Chemical Physics 121(8): 3919-3929. <http://hdl.handle.net/2027.42/70812>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70812
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15303961&dopt=citationen_US
dc.description.abstractWe perform lattice Monte Carlo simulations to study the self-assembly of functionalized inorganic nanoscale building blocks using recognitive biomolecule linkers. We develop a minimal coarse-grained lattice model for the nanoscale building block (NBB) and the recognitive linkers. Using this model, we explore the influence of the size ratio of linker length to NBB diameter on the assembly process and the structural properties of the resulting aggregates, including the spatial distribution of NBBs and aggregate topology. We find the constant-kernel Smoluchowski theory of diffusion-limited cluster–cluster aggregation describes the aggregation kinetics for certain size ratios. © 2004 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent1361612 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleBiomolecule-directed assembly of nanoscale building blocks studied via lattice Monte Carlo simulationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.identifier.pmid15303961en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70812/2/JCPSA6-121-8-3919-1.pdf
dc.identifier.doi10.1063/1.1774154en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceC. J. Murphy, Science SCIEAS298, 2139 (2002).en_US
dc.identifier.citedreferenceR. D. Kamien, Science SCIEAS299, 1671 (2003).en_US
dc.identifier.citedreferenceW. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science SCIEAS295, 2425 (2002).en_US
dc.identifier.citedreferenceJ. J. Urban, W. S. Yun, Q. Gu, and H. Park, J. Am. Chem. Soc. JACSAT124, 1186 (2002).en_US
dc.identifier.citedreferenceY. G. Sun and Y. N. Xia, Science SCIEAS298, 2176 (2002).en_US
dc.identifier.citedreferenceR. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, Science SCIEAS294, 1901 (2001).en_US
dc.identifier.citedreferenceG. P. Mitchell, C. A. Mirkin, and R. L. Letsinger, J. Am. Chem. Soc. JACSAT121, 8122 (1999).en_US
dc.identifier.citedreferenceR. L. Letsinger, R. Elghanian, G. Viswanadham, and C. A. Mirkin, Bioconjugate Chem. BCCHES11, 289 (2000).en_US
dc.identifier.citedreferenceL. Xu, Y. Guo, R. Xie, J. Zhuang, W. Yang, and T. Li, Nanotechnology NNOTER13, 725 (2002).en_US
dc.identifier.citedreferenceJ. Liu, J. Alvarez, and A. E. Kaifer, Adv. Mater. (Weinheim, Ger.) ADVMEW12, 1381 (2000).en_US
dc.identifier.citedreferenceE. Dujardin, L.-B. Hsin, C. R. C. Wang, and S. Mann, Chem. Commun. (Cambridge) CHCOFS14, 1264 (2001).en_US
dc.identifier.citedreferenceA. Star, J. F. Stoddart, D. Steuerman et al., Angew. Chem., Int. Ed. Engl. ACIEAY40, 1721 (2001).en_US
dc.identifier.citedreferenceR. J. Chen, Y. Zhang, D. Wang, and H. Dai, J. Am. Chem. Soc. JACSAT123, 3838 (2001).en_US
dc.identifier.citedreferenceG. R. Dieckmann, A. B. Dalton, P. A. Johnson et al., J. Am. Chem. Soc. JACSAT125, 1770 (2003).en_US
dc.identifier.citedreferenceC. A. Dyke and J. M. Tour, J. Am. Chem. Soc. JACSAT125, 1156 (2003).en_US
dc.identifier.citedreferenceA. M. Cassell, W. A. Scrivens, and J. M. Tour, Angew. Chem., Int. Ed. Engl. ACIEAY37, 1528 (1998).en_US
dc.identifier.citedreferenceR. M. Laine, J. W. Choi, and I. Lee, Adv. Mater. (Weinheim, Ger.) ADVMEW13, 800 (2001).en_US
dc.identifier.citedreferenceR. O. R. Costa, W. L. Vasconcelos, R. Tamaki, and R. M. Laine, Macromolecules MAMOBX34, 5398 (2001).en_US
dc.identifier.citedreferenceJ. Choi, J. Harcup, A. F. Yee, Q. Zhu, and R. M. Laine, J. Am. Chem. Soc. JACSAT123, 11420 (2001).en_US
dc.identifier.citedreferenceC. X. Zhang, F. Babonneau, C. Bonhomme, R. M. Laine, C. L. Soles, H. A. Hristov, and A. F. Yee, J. Am. Chem. Soc. JACSAT120, 8380 (1998).en_US
dc.identifier.citedreferenceC. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature (London) NATUAS382, 607 (1996).en_US
dc.identifier.citedreferenceS. Mann, W. Shenton, M. Li, S. Connolly, and D. Fitzmaurice, Adv. Mater. (Weinheim, Ger.) ADVMEW12, 147 (2000).en_US
dc.identifier.citedreferenceC. M. Niemeyer, Curr. Opin. Chem. Biol. COCBF44, 609 (2000).en_US
dc.identifier.citedreferenceA. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell, and V. M. Rotello, Nature (London) NATUAS404, 746 (2000).en_US
dc.identifier.citedreferenceB. L. Frankamp, O. Uzun, F. Ilhan, A. K. Boal, and V. M. Rotello, J. Am. Chem. Soc. JACSAT124, 892 (2002).en_US
dc.identifier.citedreferenceA. K. Boal, M. Gray, F. Ilhan, G. M. Clavier, L. Kapitzky, and V. M. Rotello, Tetrahedron TETRAB58, 765 (2002).en_US
dc.identifier.citedreferenceJ. J. Storhoff, R. C. Mucic, and C. A. Mirkin, J. Cluster Sci. JCSCEB8, 179 (1997).en_US
dc.identifier.citedreferenceC. M. Niemeyer, Angew. Chem., Int. Ed. Engl. ACIEAY40, 4128 (2001).en_US
dc.identifier.citedreferenceR. C. Mucic, J. J. Storhoff, C. A. Mirkin, and R. L. Letsinger, J. Am. Chem. Soc. JACSAT120, 12674 (1998).en_US
dc.identifier.citedreferenceK. J. Watson, S. J. Park, J. H. Im, S. T. Nguyen, and C. A. Mirkin, J. Am. Chem. Soc. JACSAT123, 5592 (2001).en_US
dc.identifier.citedreferenceS. Connolly and D. Fitzmaurice, Adv. Mater. (Weinheim, Ger.) ADVMEW11, 1202 (1999).en_US
dc.identifier.citedreferenceM. Li, K. K. W. Wong, and S. Mann, Chem. Mater. CMATEX11, 23 (1999).en_US
dc.identifier.citedreferenceW. Shenton, S. A. Davis, and S. Mann, Adv. Mater. (Weinheim, Ger.) ADVMEW11, 449 (1999).en_US
dc.identifier.citedreferenceJ. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, J. Am. Chem. Soc. JACSAT122, 4640 (2000).en_US
dc.identifier.citedreferenceI. Carmesin and K. Kremer, Macromolecules MAMOBX21, 2819 (1988).en_US
dc.identifier.citedreferenceH. P. Deutsch and K. Binder, J. Chem. Phys. JCPSA694, 2294 (1991).en_US
dc.identifier.citedreferenceW. Paul, K. Binder, D. W. Heermann, and K. Kremer, J. Chem. Phys. JCPSA695, 7726 (1991).en_US
dc.identifier.citedreferenceA. Z. Panagiotopoulos and S. K. Kumar, Phys. Rev. Lett. PRLTAO83, 2981 (1999).en_US
dc.identifier.citedreferenceM. Schulz and J. U. Sommer, J. Chem. Phys. JCPSA696, 7102 (1992).en_US
dc.identifier.citedreferenceM. Schulz and H. L. Frisch, J. Chem. Phys. JCPSA6101, 10008 (1994).en_US
dc.identifier.citedreferenceH. L. Trautenberg, J. U. Sommer, and D. Goritz, J. Chem. Soc., Faraday Trans. JCFTEV91, 2649 (1995).en_US
dc.identifier.citedreferenceC. Hagn, M. Wittkop, S. Kreitmeier, H. L. Trautenberg, T. Holzl, and D. Goritz, Polym. Gels Networks PGNEEI5, 327 (1997).en_US
dc.identifier.citedreferenceN. Gilra, C. Cohen, and A. Z. Panagiotopoulos, J. Chem. Phys. JCPSA6112, 6910 (2000).en_US
dc.identifier.citedreferenceW. Michalke, S. Kreitmeier, M. Lang, A. Buchner, and D. Goritz, Comput. Theor. Polym. Sci. CTPSFJ11, 459 (2001).en_US
dc.identifier.citedreferenceW. Michalke, M. Lang, S. Kreitmeier, and D. Goritz, J. Chem. Phys. JCPSA6117, 6300 (2002).en_US
dc.identifier.citedreferenceZ. Chen, C. Cohen, and F. A. Escobedo, Macromolecules MAMOBX35, 3296 (2002).en_US
dc.identifier.citedreferenceL. M. Demers, C. A. Mirkin, R. C. Mucic, R. A. Reynolds, R. L. Letsinger, R. Elghanian, and G. Viswanadham, Anal. Chem. ANCHAM72, 5535 (2000).en_US
dc.identifier.citedreferenceL. Stryer, Biochemistry, 4th ed. (W. H. Freeman, New York, 1995).en_US
dc.identifier.citedreferenceA. Di Cecca and J. Freire, Macromolecules MAMOBX35, 2851 (2002).en_US
dc.identifier.citedreferenceM. H. Lamm, T. Chen, and S. C. Glotzer, Nano Lett. NALEFD3, 989 (2003).en_US
dc.identifier.citedreferenceAlthough time is not an inherent quantity in Monte Carlo simulations, in simulations employing the bond fluctuation algorithm, a dynamic Monte Carlo algorithm, one MCS may be considered proportional to a unit of time.en_US
dc.identifier.citedreferenceA. A. Rzepiela, J. H. J. van Opheusden, and T. van Vliet, J. Colloid Interface Sci. JCISA5244, 43 (2001).en_US
dc.identifier.citedreferenceR. M. Ziff, E. D. McGrady, and P. Meakin, J. Chem. Phys. JCPSA682, 5269 (1985).en_US
dc.identifier.citedreferenceS. Salaniwal, S. T. Cui, H. D. Cochran, and P. T. Cummings, Langmuir LANGD517, 1784 (2001).en_US
dc.identifier.citedreferenceM. C. Buján-Núñez and B. Vázquez-Varela, Mol. Phys. MOPHAM98, 1011 (2000).en_US
dc.identifier.citedreferenceE. T. Kisak, M. T. Kennedy, D. Trommeshauser, and J. A. Zasadzinski, Langmuir LANGD516, 2825 (2000).en_US
dc.identifier.citedreferenceS. Connolly, S. Cobbe, and D. Fitzmaurice, J. Phys. Chem. B JPCBFK105, 2222 (2001).en_US
dc.identifier.citedreferenceM. Z. Smoluchowski, Z. Phys. Chem., Stoechiom. Verwandtschaftsl. ZEPCAC92, 129 (1917).en_US
dc.identifier.citedreferenceP. Meakin, T. Vicsek, and F. Family, Phys. Rev. B PRBMDO31, 564 (1985).en_US
dc.identifier.citedreferenceS. K. Friedlander, Smoke, Dust and Haze: Fundamentals of Aerosol Behavior (Wiley, New York, 1977).en_US
dc.identifier.citedreferenceJ. Schmelzer, G. Ropke, and R. Mahnke, Aggregation Phenomena in Complex Systems (Wiley-VCH, Weinheim, 1999).en_US
dc.identifier.citedreferenceW. T. Scott, J. Atmos. Sci. JAHSAK25, 54 (1968).en_US
dc.identifier.citedreferenceJ. B. McLeod, Quarterly J. Math. QJMAAT13, 119, 193 (1962).en_US
dc.identifier.citedreferenceR. M. Ziff, J. Stat. Phys. JSTPBS23, 241 (1980).en_US
dc.identifier.citedreferenceP. G. J. van Dongen and M. H. Ernst, Phys. Rev. Lett. PRLTAO54, 1396 (1985).en_US
dc.identifier.citedreferenceA. Nijenhuis and H. S. Wilf, Combinatorial Algorithms (Academic, New York, 1975).en_US
dc.identifier.citedreferenceD. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd ed. (Taylor and Francis, London, 1994).en_US
dc.identifier.citedreferenceBy this definition, loops will not be considered as terminal ends. But since loops are already considered above, the code will also burn them, if there are any, as illustrated in Fig. 1(b).en_US
dc.identifier.citedreferenceIn this work, we use hexafunctional NBBs in which the functional sites are located in the center of each of six faces, so double-bridge and triple-bridge NBBs illustrated in Fig. 1(c) are relatively rare unless the linker is long.en_US
dc.identifier.citedreferenceZ. L. Zhang, M. A. Horsch, M. H. Lamm, and S. C. Glotzer, Nano Lett. NALEFD3, 1341 (2003).en_US
dc.identifier.citedreferenceZ. L. Zhang and S. C. Glotzer, Nano Lett. (in press).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.