Show simple item record

High intensity femtosecond laser deposition of diamond-like carbon thin films

dc.contributor.authorQian, F.en_US
dc.contributor.authorCraciun, V.en_US
dc.contributor.authorSingh, R. K.en_US
dc.contributor.authorDutta, S. K.en_US
dc.contributor.authorPronko, P. P.en_US
dc.date.accessioned2010-05-06T22:45:33Z
dc.date.available2010-05-06T22:45:33Z
dc.date.issued1999-08-15en_US
dc.identifier.citationQian, F.; Craciun, V.; Singh, R. K.; Dutta, S. D.; Pronko, P. P. (1999). "High intensity femtosecond laser deposition of diamond-like carbon thin films." Journal of Applied Physics 86(4): 2281-2290. <http://hdl.handle.net/2027.42/70817>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70817
dc.description.abstractHydrogen-free diamond-like carbon (DLC) films have been deposited with a 100 fs (FWHM) Ti:sapphire laser beam at intensities I in the 1014–1015 W/cm21014–1015W/cm2 range. The films were studied with scanning probe microscopy, variable angle spectroscopic ellipsometry, Raman spectroscopy, and electron energy loss spectroscopy. DLC films with good scratch resistance, excellent chemical inertness, and high optical transparency in the visible and near infrared range were deposited at room temperature. As the laser intensity was increased from 3×10143×1014 to 6×1015 W/cm2,6×1015W/cm2, the films showed an increased surface particle density, a decreased optical transparency (85%→60%),(85%→60%), and Tauc band gap (1.4→0.8 eV),(1.4→0.8eV), as well as a lower sp3sp3 content (60%→50%).(60%→50%). The time-of-flight spectra recorded from the laser plume exhibited a double-peak distribution, with a high energy suprathermal ion peak preceding a slower thermal component. The most probable ion kinetic energy showed an I0.55I0.55 dependence, increasing from 300 to 2000 eV, when the laser intensity was varied from 3×10143×1014 to 6×1015 W/cm2,6×1015W/cm2, while the kinetic energy of suprathermal ions increased from 3 to over 20 keV and showed an I0.33I0.33 dependence. These high energy ions are believed to have originated from an electrostatic acceleration field established by suprathermal electrons which were formed by resonant absorption of the intense laser beams. © 1999 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent301736 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleHigh intensity femtosecond laser deposition of diamond-like carbon thin filmsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCenter for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherDepartment of Materials Science & Engineering, University of Florida, Gainesville, Florida 32611en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70817/2/JAPIAU-86-4-2281-1.pdf
dc.identifier.doi10.1063/1.371043en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferencePulsed Laser Deposition of Thin Films, edited by D. B. Chrisey and G. K. Hubler (Wiley, New York, 1994).en_US
dc.identifier.citedreferenceC. L. Marquart, R. T. Williams, and D. J. Nagel, Mater. Res. Soc. Symp. Proc. MRSPDH38, 325 (1985).en_US
dc.identifier.citedreferenceW. Pompe, H. J. Scheibe, A. Richeter, H. D. Baner, K. Bewilogua, and C. Weissmantel, Thin Solid Films THSFAP144, 77 (1986).en_US
dc.identifier.citedreferenceC. B. Collins, F. Davanloo, E. M. Juengerman, W. R. Osborn, and D. R. Jander, Appl. Phys. Lett. APPLAB54, 216 (1989).en_US
dc.identifier.citedreferenceV. I. Merkulov, D. H. Lowndes, G. E. Jellison, Jr., A. A. Puretzky, and D. B. Geohegan, Appl. Phys. Lett. APPLAB73, 2591 (1998).en_US
dc.identifier.citedreferenceD. Strickland and G. Mourou, Opt. Commun. OPCOB856, 219 (1985).en_US
dc.identifier.citedreferenceW. Demtröder and W. Jantz, Plasma Phys. PLPHBZ12, 691 (1970).en_US
dc.identifier.citedreferenceJ. J. Cuomo, D. L. Pappas, J. Bruly, J. P. Doyle, and K. Saenger, J. Appl. Phys. JAPIAU70, 1706 (1991).en_US
dc.identifier.citedreferenceA. W. Ehler, J. Appl. Phys. JAPIAU46, 2464 (1975).en_US
dc.identifier.citedreferenceJ. Stevefelt and C. B. Collins, J. Phys. D JPAPBE24, 2149 (1991).en_US
dc.identifier.citedreferenceT. P. Hughes, Laser-Plasma Interactions, Proceedings of the Twentieth Scottish Universities Summer School in Physics, edited by R. A. Cairns and J. J. Sanderson (Edinburgh University Press, Edinburgh, 1980), pp. 1–90.en_US
dc.identifier.citedreferenceD. V. Giovanielli, J. F. Kephart, and A. H. Williams, J. Appl. Phys. JAPIAU47, 2907 (1976).en_US
dc.identifier.citedreferenceD. W. Forslund, J. M. Kindel, and K. Lee, Phys. Rev. Lett. PRLTAO39, 284 (1977).en_US
dc.identifier.citedreferenceK. Estabrook and W. L. Kruer, Phys. Rev. Lett. PRLTAO40, 42 (1978).en_US
dc.identifier.citedreferenceJ. D. Hares, J. D. Kilkenny, M. H. Key, and J. G. Lunney, Phys. Rev. Lett. PRLTAO42, 1216 (1979).en_US
dc.identifier.citedreferenceJ. P. Freidberg, R. W. Mitchell, R. L. Morse, and L. I. Rudsinski, Phys. Rev. Lett. PRLTAO28, 795 (1972).en_US
dc.identifier.citedreferenceR. L. Morse and C. W. Nielson, Phys. Fluids PFLDAS16, 909 (1973).en_US
dc.identifier.citedreferenceE. J. Valeo and I. B. Bernstein, Phys. Fluids PFLDAS19, 1348 (1976).en_US
dc.identifier.citedreferenceM. G. Haines, Laser-Plasma Interactions, Proceedings of the Twentieth Scottish Universities Summer School in Physics, edited by R. A. Cairns and J. J. Sanderson (Edinburgh University Press, Edinburgh, 1980), pp. 145–218.en_US
dc.identifier.citedreferenceD. H. Reitze, H. Ahn, and M. C. Downer, Phys. Rev. B PRBMDO45, 2677 (1992).en_US
dc.identifier.citedreferenceP. G. Synder, J. A. Woollam, S. A. Alterovitz, and B. Johs, J. Appl. Phys. JAPIAU68, 5925 (1990).en_US
dc.identifier.citedreferenceF. Demichelis, C. F. Pirri, and A. Tagliaferro, Phys. Rev. B PRBMDO45, 14364 (1992).en_US
dc.identifier.citedreferenceJ. Tauc, Amorphous and Liquid Semiconductors, edited by J. Tauc (Plenum, London, 1974), pp. 159–220.en_US
dc.identifier.citedreferenceJ. Robertson and E. P. O’Reilly, Phys. Rev. B PRBMDO35, 2946 (1987).en_US
dc.identifier.citedreferenceH. Owen, D. E. Battey, M. J. Pelletier, and J. B. Slater, Proc. SPIE PSISDG2406, 260 (1995).en_US
dc.identifier.citedreferenceR. O. Dillon, J. A. Woollam, and V. Katkanant, Phys. Rev. B PRBMDO29, 3482 (1984).en_US
dc.identifier.citedreferenceD. Beeman, J. Silverman, R. Lynds, and M. R. Anderson, Phys. Rev. B PRBMDO30, 870 (1984).en_US
dc.identifier.citedreferenceF. Qian, Master’s thesis, University of Florida, 1993.en_US
dc.identifier.citedreferenceD. S. Knight and W. B. White, J. Mater. Res. JMREEE4, 385 (1989).en_US
dc.identifier.citedreferenceK. Enke, Thin Solid Films THSFAP80, 227 (1981).en_US
dc.identifier.citedreferenceK. Sinha, J. Menendez, O. F. Sankey, D. A. Johnson, W. J. Varhue, J. N. Kidder, P. W. Pastel, and W. Lanford, Appl. Phys. Lett. APPLAB60, 562 (1992).en_US
dc.identifier.citedreferenceN. Wada, P. J. Gaczi, and S. A. Solin, J. Non-Cryst. Solids JNCSBJ35/36, 543 (1980).en_US
dc.identifier.citedreferenceD. L. Pappas, K. L. Saenger, J. Bruley, W. Krakow, J. J. Cuomo, T. Gu, and R. W. Collins, J. Appl. Phys. JAPIAU71, 5675 (1992).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.