Show simple item record

How the unit cell surface charge distribution affects the energetics of ion–solvent interactions in simulations

dc.contributor.authorRoberts, James E.en_US
dc.contributor.authorSchnitker, Jurgenen_US
dc.date.accessioned2010-05-06T22:46:30Z
dc.date.available2010-05-06T22:46:30Z
dc.date.issued1994-09-15en_US
dc.identifier.citationRoberts, James E.; Schnitker, Jurgen (1994). "How the unit cell surface charge distribution affects the energetics of ion–solvent interactions in simulations." The Journal of Chemical Physics 101(6): 5024-5031. <http://hdl.handle.net/2027.42/70827>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70827
dc.description.abstractThe evaluation of the electrostatic potential in condensed phase simulations normally includes an ‘‘extrinsic’’ contribution that manifests natural imbalances in the surface charge distribution of the microscopic unit cell. Most directly affected are ion–solvent interaction energies, and depending on whether the specific simulation conditions eliminate the extrinsic potential or not, these energies can vary by a considerable amount. This is illustrated by examining simulations of dilute aqueous solutions of Cl− and Fe2+ that use either a cutoff scheme or Ewald summation. It is found that the ion–water potential energy can vary with the type of boundary condition by as much as ≊60 kJ mol−1 for Cl− and ≊800 kJ mol−1 for Fe2+. The difference is exclusively due to the extrinsic potential effect and it is easy to calculate an appropriate correction term.en_US
dc.format.extent3102 bytes
dc.format.extent1134497 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleHow the unit cell surface charge distribution affects the energetics of ion–solvent interactions in simulationsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109‐1055en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70827/2/JCPSA6-101-6-5024-1.pdf
dc.identifier.doi10.1063/1.467425en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceThe Problem of Long Range Forces in the Computer Simulation of Condensed Media, edited by D. Ceperley, NRCC Proceedings No. 9 (Lawrence Berkeley Laboratory, 1980).en_US
dc.identifier.citedreferenceM. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987), and references therein.en_US
dc.identifier.citedreferenceRecent work on boundary conditions in water and aqueous solutions includes: (a) M. Prevost, D. van Belle, G. Lippens, and S. Wodak, Mol. Phys. 71, 587 (1990); (b) M. Belhadj, H. E. Alper, and R. M. Levy, Chem. Phys. Lett. 179, 13 (1991); (c) P. E. Smith and B. M. Pettitt, J. Chem. Phys. 95, 8430 (1991); (d) J. S. Bader and D. Chandler, J. Phys. Chem. 96, 6423 (1992); (e) H. Schreiber and O. Steinhauser, Chem. Phys. 168, 75 (1992); (f) F. S. Lee and A. Warshel, J. Chem. Phys. 97, 3100 (1992); (g) K. Tasaki, S. McDonald, and J. W. Brady, J. Comp. Chem. 14, 278 (1993); (h) H. E. Alper, D. Bassolino, and T. R. Stouch, J. Chem. Phys. 98, 9798 (1993).en_US
dc.identifier.citedreferenceSee, for example, N. W. Ashcroft, and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976), Chaps. 18, 20.en_US
dc.identifier.citedreferenceA. Redlack and J. Grindlay, Can. J. Phys. 50, 2815 (1972); J. Phys. Chem. Solids 36, 73 (1975).en_US
dc.identifier.citedreferenceS. N. Stewart, J. Comp. Phys. 29, 127 (1978).en_US
dc.identifier.citedreferenceR. N. Euwema and G. T. Surratt, J. Phys. Chem. Solids 36, 67 (1975).en_US
dc.identifier.citedreferenceS. Kuwajima and A. Warshel, J. Chem. Phys. 89, 3751 (1988).en_US
dc.identifier.citedreferenceE. R. Smith, Proc. R. Soc. London Ser. A 375, 475 (1981).en_US
dc.identifier.citedreferenceH. M. Evjen, Phys. Rev. 39, 675 (1932).en_US
dc.identifier.citedreferenceP. P. Ewald, Ann. Phys. 64, 253 (1921). See also M. P. Tosi, in Solid State Physics, Vol. 16, edited by F. Seitz and D. Turnbull (Academic, New York, 1964).en_US
dc.identifier.citedreferenceS. W. De Leeuw, J. W. Perram, and E. R. Smith, Proc. R. Soc. London Ser. A 373, 27 (1980).en_US
dc.identifier.citedreferenceB. U. Felderhof, Physica 101A, 275 (1980).en_US
dc.identifier.citedreferenceB. J. Alder and E. L. Pollock, Annu. Rev. Phys. Chem. 32, 311 (1981).en_US
dc.identifier.citedreferenceM. Neumann, Mol. Phys. 57, 97 (1986).en_US
dc.identifier.citedreferenceS. W. De Leeuw, P. W. Perram, and E. R. Smith, Annu. Rev. Phys. Chem. 37, 245 (1986).en_US
dc.identifier.citedreferenceH. L. Friedman, A Course in Statistical Mechanics (Prentice Hall, Englewood Cliffs, NJ, 1985), Chap. 5.en_US
dc.identifier.citedreferenceJ. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic, London, 1986), Chap. 12.en_US
dc.identifier.citedreferenceM. J. Sangster and M. Dixon, Adv. Phys. 25, 247 (1976).en_US
dc.identifier.citedreferenceJ. P. Valleau and S. G. Whittington, in Statistical Mechanics, Part A, edited by B. J. Berne (Plenum, New York, 1977).en_US
dc.identifier.citedreferenceBy expanding in spherical harmonics, Redlack and Grindlay (Ref. 5) also arrive at a completely general, but only approximate expression for the extrinsic potential within a region of arbitrary (nonellipsoidal) shape.en_US
dc.identifier.citedreferenceJ. Olives, J. Phys. Lett. (Paris) 46, L1143 (1985).en_US
dc.identifier.citedreferenceH. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans, in Intermolecular Forces, edited by B. Pullman (Reidel, Dordrecht, 1981).en_US
dc.identifier.citedreferenceW. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).en_US
dc.identifier.citedreferenceO. Matsuoka, E. Clementi, and M. Yoshimine, J. Chem. Phys. 64, 1351 (1976).en_US
dc.identifier.citedreferenceJ. Chandrasekhar, D. C. Spellmeyer, and W. L. Jorgensen, J. Am. Chem. Soc. 106, 903 (1984).en_US
dc.identifier.citedreferenceL. A. Curtiss, J. W. Halley, J. Hautman, and A. Rahman, J. Chem. Phys. 86, 2319 (1987).en_US
dc.identifier.citedreferenceD. J. Adams, E. M. Adams, and G. J. Hills, Mol. Phys. 38, 387 (1979).en_US
dc.identifier.citedreferenceO. Steinhauser, Mol. Phys. 45, 335 (1982).en_US
dc.identifier.citedreferenceJ. R. Reimers, R. O. Watts, and M. L. Klein, Chem. Phys. 64, 95 (1982); K. Watanabe and M. L. Klein, 131, 157 (1989).en_US
dc.identifier.citedreferenceJ. E. Roberts and J. Schnitker (submitted).en_US
dc.identifier.citedreferenceM. Von Laue, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl. 1930, 26.en_US
dc.identifier.citedreferenceSee, for example, J. A. Barker, in Ref. 1.en_US
dc.identifier.citedreferenceM. Neumann and O. Steinhauser, Mol. Phys. 39, 437 (1980).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.