Show simple item record

Perfectly conducting incompressible fluid model of a wire array implosion

dc.contributor.authorVelikovich, Alexander L.en_US
dc.contributor.authorSokolov, Igor V.en_US
dc.contributor.authorEsaulov, Andrey A.en_US
dc.date.accessioned2010-05-06T22:47:38Z
dc.date.available2010-05-06T22:47:38Z
dc.date.issued2002-04en_US
dc.identifier.citationVelikovich, Alexander L.; Sokolov, Igor V.; Esaulov, Andrey A. (2002). "Perfectly conducting incompressible fluid model of a wire array implosion." Physics of Plasmas 9(4): 1366-1380. <http://hdl.handle.net/2027.42/70839>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70839
dc.description.abstractAn incompressible perfectly conducting magnetohydrodynamic model is applied to describe a multiwire array implosion on the (r,θ)(r,θ) plane using the theory of analytic functions. The plasma columns emerging from the electrical explosion of individual wires move and change the shape of their cross section in the magnetic field produced by the currents flowing on the surfaces of the columns and closing through a cylindrical return current can. Geometry of both the “global” and “private” magnetic fields and self-consistent distributions of the electric currents on the conducting surfaces are determined for any wire array configuration including nested wire arrays, wires close to the return current can, etc. The coupled equations of motion and magnetostatics for an essentially two-dimensional problem are reduced to one-dimensional parametric governing equations, written for the boundary of the fluid contours. The implosion dynamics is shown to be driven by a competition between the implosion pressure, making the array converge to the axis as a set of individual plasma columns, and the tidal pressure that makes the wires merge, forming an annular conducting shell. Their relative roles are determined by the gap-to-diameter ratio πRc(t)/NRw(t).πRc(t)/NRw(t). If this ratio is large at early time, then the array implodes as a set of individual plasma columns. Otherwise, when the ratio is about π or less, the tidal forces prevail, and the plasma columns tend to form a shell-like configuration before they start converging to the axis of the array. The model does not allow the precursor plasma streams to be ejected from the wires to the axis, indicating that this process is governed by the finite plasma conductivity and could only be described with a proper conductivity model. © 2002 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent299852 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titlePerfectly conducting incompressible fluid model of a wire array implosionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherPlasma Physics Division, Naval Research Laboratory, Washington, DC 20375en_US
dc.contributor.affiliationotherToyama University, Toyama 930-8555, Japanen_US
dc.contributor.affiliationotherInstitute of Theoretical and Experimental Physics, Moscow 117259, Russiaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70839/2/PHPAEN-9-4-1366-1.pdf
dc.identifier.doi10.1063/1.1452104en_US
dc.identifier.sourcePhysics of Plasmasen_US
dc.identifier.citedreferenceC. Deeney, M. R. Douglas, R. B. Spielman, T. J. Nash, D. L. Peterson, P. L’Eplattenier, G. A. Chandler, J. F. Seaman, and K. W. Struve, Phys. Rev. Lett. PRLTAO81, 4883 (1998).en_US
dc.identifier.citedreferenceC. Deeney, C. A. Coverdale, M. R. Douglas, T. J. Nash, R. B. Spielman, K. W. Struve, K. G. Whitney, J. W. Thornhill, J. P. Apruzese, R. W. Clark, J. Davis, F. N. Beg, and J. Ruiz-Camacho, Phys. Plasmas PHPAEN61, 2081 (1999).en_US
dc.identifier.citedreferenceH. Sze, J. Banister, P. L. Coleman, B. H. Failor, A. Fisher, J. S. Levine, Y. Song, E. M. Waisman, J. P. Apruzese, R. W. Clark, J. Davis, D. Mosher, J. W. Thornhill, A. L. Velikovich, B. V. Weber, C. A. Coverdale, C. Deeney, T. Gilliland, J. McGurn, R. Spielman, K. Struve, W. Stygar, and D. Bell, Phys. Plasmas PHPAEN8, 3135 (2001).en_US
dc.identifier.citedreferenceY. Song, P. Coleman, B. H. Failor, A. Fisher, R. Ingermanson, J. S. Levine, H. Sze, E. Waisman, R. J. Commisso, T. Cochran, J. Davis, B. Moosman, A. L. Velikovich, B. V. Weber, D. Bell, and R. Schneider, Rev. Sci. Instrum. RSINAK71, 3080 (2000).en_US
dc.identifier.citedreferenceF. L. Cochran, J. Davis, and A. L. Velikovich, Phys. Plasmas PHPAEN2, 2765 (1995).en_US
dc.identifier.citedreferenceA. L. Velikovich, F. L. Cochran, and J. Davis, Phys. Rev. Lett. PRLTAO77, 853 (1996); A. L. Velikovich, F. L. Cochran, J. Davis, and Y. K. Chong, Phys. Plasmas PHPAEN5, 3377 (1998).en_US
dc.identifier.citedreferenceT. W. L. Sanford, R. C. Mock, R. B. Spielman, D. L. Peterson, D. Mosher, and N. F. Roderick, Phys. Plasmas PHPAEN5, 3737 (1998).en_US
dc.identifier.citedreferenceJ. Davis, N. A. Gondarenko, and A. L. Velikovich, Appl. Phys. Lett. APPLAB70, 170 (1997).en_US
dc.identifier.citedreferenceR. E. Terry, J. Davis, C. Deeney, and A. L. Velikovich, Phys. Rev. Lett. PRLTAO83, 4305 (1999).en_US
dc.identifier.citedreferenceJ. P. Chittenden, S. V. Lebedev, A. R. Bell, R. Aliaga-Rossel, S. N. Bland, and M. G. Haines, Phys. Rev. Lett. PRLTAO83, 100 (1999); J. P. Chittenden, S. V. Lebedev, S. N. Bland, F. N. Beg, and M. G. Haines, Phys. Plasmas PHPAEN8, 2305 (2001).en_US
dc.identifier.citedreferenceD. L. Peterson, R. L. Bowers, K. D. McLenithan, C. Deeney, G. A. Chandler, R. B. Spielman, M. K. Matzen, and N. F. Roderick, Phys. Plasmas PHPAEN5, 3302 (1998).en_US
dc.identifier.citedreferenceD. L. Peterson, R. L. Bowers, W. Matuska, K. D. McLenithan, G. A. Chandler, C. Deeney, M. S. Derzon, M. Douglas, M. K. Matzen, T. J. Nash, R. B. Spielman, K. W. Struve, W. A. Stygar, and N. F. Roderick, Phys. Plasmas PHPAEN6, 2178 (1999).en_US
dc.identifier.citedreferenceL. I. Rudakov, A. L. Velikovich, J. Davis, J. W. Thornhill, J. L. Giuliani, Jr., and C. Deeney, Phys. Rev. Lett. PRLTAO84, 3326 (2000); A. L. Velikovich, L. I. Rudakov, J. Davis, J. W. Thornhill, J. L. Giuliani, Jr., and C. Deeney, Phys. Plasmas PHPAEN7, 3265 (2000).en_US
dc.identifier.citedreferenceS. V. Lebedev, F. N. Beg, S. N. Bland, J. P. Chittenden, A. F. Dangor, M. G. Haines, K. H. Kwek, S. A. Pikuz, and T. A. Shelkovenko, Phys. Plasmas PHPAEN8, 3734 (2001).en_US
dc.identifier.citedreferenceS. V. Lebedev, F. N. Beg, S. N. Bland, J. P. Chittenden, A. F. Dangor, M. G. Haines, K. H. Kwek, S. A. Pikuz, and T. A. Shelkovenko, Phys. Rev. Lett. PRLTAO85, 98 (2000).en_US
dc.identifier.citedreferenceS. V. Lebedev, R. Aliaga-Rossel, S. N. Bland, J. P. Chittenden, A. E. Dangor, M. G. Haines, and M. Zakaullah, Phys. Rev. Lett. PRLTAO84, 1708 (2000); J. P. Chittenden, S. V. Lebedev, S. N. Bland, A. Ciardi, and M. G. Haines, Phys. Plasmas PHPAEN8, 675 (2001).en_US
dc.identifier.citedreferenceR. B. Baksht, A. Y. Labetsky, S. V. Loginov, V. I. Oreshkin, A. V. Fedyunin, and A. V.Shishlov, Plasma Phys. Rep. PPHREM23, 119 (1995); R. B. Baksht, A. Y. Labetsky, A. G. Rousskikh, A. V. Fedyunin, A. V. Shishlov, V. A. Kokshenev, and N. E. Kurmaev, 27, 557 (2001).en_US
dc.identifier.citedreferenceE. M. Waisman, J. Appl. Phys. JAPIAU50, 23 (1979).en_US
dc.identifier.citedreferenceA. I. Dyachenko, V. E. Zakharov, and E. A. Kuznetsov, Plasma Phys. Rep. PPHREM22, 829 (1996).en_US
dc.identifier.citedreferenceM. A. Lavrentyev and B. V. Shabat, Problems of Hydrodynamics and Their Mathematical Models, 2nd ed. (in Russian) (Nauka, Moscow, 1977); Z. Nehari, Conformal Mapping (McGraw Hill, New York, 1952).en_US
dc.identifier.citedreferenceI. E. Parshukov, Ph. D. thesis (in Russian), Chelyabinsk State University, Chelyabinsk, Russia, 1997.en_US
dc.identifier.citedreferenceL. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, New York, 1984).en_US
dc.identifier.citedreferenceA. Russell, J. Inst. Electr. Eng. JIEEBK62, 1 (1923); 69, 270 (1931); F. W. Grover, Inductance Calculations/Working Formulas and Tables (Van Nostrand, New York, 1946), p. 43.en_US
dc.identifier.citedreferenceJ. Katzenstein, J. Appl. Phys. JAPIAU52, 676 (1981).en_US
dc.identifier.citedreferenceN. A. Bobrova, T. L. Razinkova, and P. V. Sasorov, Sov. J. Plasma Phys. SJPPDC14, 617 (1988); 18, 269 (1992); in Dense Z-Pinches, 3rd International Conference, AIP Conf. Proc. 299, London, United Kingdom, 19–23 April 1993, edited by M. Haines and A. Knight (American Institute of Physics, New York, 1994), p. 10.en_US
dc.identifier.citedreferenceR. Menikoff and C. Zemach, J. Comput. Phys. JCTPAH51, 28 (1983); G. Hazak, Phys. Rev. Lett. PRLTAO76, 4167 (1996); A. L. Velikovich and G. Dimonte, 76, 3112 (1996); N. J. Zabusky, Annu. Rev. Fluid Mech. ARVFA331, 495 (1999).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.