Show simple item record

Adsorption-controlled growth of Bi4Ti3O12Bi4Ti3O12 by reactive MBE

dc.contributor.authorTheis, Chris D.en_US
dc.contributor.authorYeh, J.en_US
dc.contributor.authorSchlom, Darrell G.en_US
dc.contributor.authorHawley, M. E.en_US
dc.contributor.authorBrown, G. W.en_US
dc.contributor.authorJiang, J. C.en_US
dc.contributor.authorPan, Xiaoqingen_US
dc.date.accessioned2010-05-06T22:49:33Z
dc.date.available2010-05-06T22:49:33Z
dc.date.issued1998-06-01en_US
dc.identifier.citationTheis, C. D.; Yeh, J.; Schlom, D. G.; Hawley, M. E.; Brown, G. W.; Jiang, J. C.; Pan, X. Q. (1998). "Adsorption-controlled growth of Bi4Ti3O12Bi4Ti3O12 by reactive MBE." Applied Physics Letters 72(22): 2817-2819. <http://hdl.handle.net/2027.42/70859>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70859
dc.description.abstractAdsorption-controlled conditions have been identified and utilized to grow epitaxial bismuth titanate thin films by reactive molecular beam epitaxy. Growth of stoichiometric, phase pure, cc-axis oriented, epitaxial films is achieved by supplying a large overabundance of bismuth and ozone continuously to the surface of the depositing film. Titanium is supplied to the film in the form of shuttered bursts each containing a three monolayer dose of titanium to grow one formula unit of Bi4Ti3O12.Bi4Ti3O12. It is seen from measured film thickness, Rutherford backscattering spectrometry composition measurements, monitoring of reflection high-energy electron diffraction half-order intensity oscillations during growth, and in situ flux measurements using atomic absorption spectroscopy that at suitable temperature and ozone background pressure, the titanium sticking coefficient approaches one and the excess bismuth desorbs from the surface. Film growth proceeds by the formation of mounds whose step heights are predominantly integral multiples of a half-unit cell.© 1998 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent349931 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleAdsorption-controlled growth of Bi4Ti3O12Bi4Ti3O12 by reactive MBEen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Department of Materials Science and Engineering, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationotherDepartment of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802-5005en_US
dc.contributor.affiliationotherCenter for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70859/2/APPLAB-72-22-2817-1.pdf
dc.identifier.doi10.1063/1.121468en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceBi4Ti3O12Bi4Ti3O12 is monoclinic with space group B1a1B1a1 as shown by A. D. Rae, J. G. Thompson, R. L. Withers, and A. C. Willis, Acta Crystallogr. Sect. B: Struct. Sci. ASBSDK46, 474 (1990).en_US
dc.identifier.citedreferenceC. A-Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott, Nature (London) NATUAS374, 627 (1995).en_US
dc.identifier.citedreferenceW. J. Takei, N. P. Formigoni, and M. H. Francombe, Appl. Phys. Lett. APPLAB15, 256 (1969).en_US
dc.identifier.citedreferenceR. Ramesh, A. Inam, W. K. Chan, B. Wilkens, K. Myers, K. Remschnig, D. L. Hart, and J. M. Tarascon, Science SCIEAS252, 944 (1991).en_US
dc.identifier.citedreferenceS. Choopun, T. Matsumoto, and T. Kawai, Appl. Phys. Lett. APPLAB67, 1072 (1995).en_US
dc.identifier.citedreferenceEPI, Chorus Corporation, St. Paul, MN.en_US
dc.identifier.citedreferenceC. D. Theis and D. G. Schlom, J. Cryst. Growth JCRGAE174, 473 (1997).en_US
dc.identifier.citedreferenceM. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Isiyama, T. Yonezawa, M. Yoshimoto, and H. Koinuma, Science SCIEAS266, 1540 (1994).en_US
dc.identifier.citedreferenceM. de Keijser and G. J. M. Dormans, MRS Bull. MRSBEA37 (1996).en_US
dc.identifier.citedreferenceJ. R. Arthur, J. Appl. Phys. JAPIAU39, 4032 (1968).en_US
dc.identifier.citedreferenceI. Barin, Thermochemical Data of Pure Substances, 3rd. ed. (VCH Publishers, Inc., New York, 1995).en_US
dc.identifier.citedreferenceS. Watanabe, T. Hikita, and Maki Kawai, J. Vac. Sci. Technol. A JVTAD69, 2394 (1991).en_US
dc.identifier.citedreferenceL. N. Sidorov, I. I. Minayeva, E. Z. Zasorin, I. D. Sorokin, and A. Ya. Borshchevskiy, High. Temp. Sci. HITSAC12, 175 (1980).en_US
dc.identifier.citedreferenceI. M. Reaney, M. Roulin, H. S. Shulman, and N. Setter, Ferroelectrics FEROA8165, 295 (1995).en_US
dc.identifier.citedreferenceS. Migita, Y. Kasai, H. Ota, and S. Sakai, Appl. Phys. Lett. APPLAB71, 3712 (1997).en_US
dc.identifier.citedreferenceC. Gerber, D. Anselmetti, J. G. Bednorz, J. Mannhart, and D. G. Schlom, Nature (London) NATUAS350, 279 (1991).en_US
dc.identifier.citedreferenceM. Hawley, I. D. Raistrick, J. G. Beery, and R. J. Houlton, Science SCIEAS251, 1587 (1991).en_US
dc.identifier.citedreferenceG. Ehrlich and F. G. Hudda, J. Chem. Phys. JCPSA644, 1039 (1966).en_US
dc.identifier.citedreferenceR. L. Schwoebel and E. J. Shipsey, J. Appl. Phys. JAPIAU37, 3682 (1966).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.