Show simple item record

Two‐point characteristic function for the Kepler–Coulomb problem

dc.contributor.authorBlinder, S. M.en_US
dc.date.accessioned2010-05-06T22:50:01Z
dc.date.available2010-05-06T22:50:01Z
dc.date.issued1975-10en_US
dc.identifier.citationBlinder, S. M. (1975). "Two‐point characteristic function for the Kepler–Coulomb problem." Journal of Mathematical Physics 16(10): 2000-2004. <http://hdl.handle.net/2027.42/70864>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70864
dc.description.abstractHamilton’s two‐point characteristic function S (q2t2,q1t1) designates the extremum value of the action integral between two space–time points. It is thus a solution of the Hamilton–Jacobi equation in two sets of variables which fulfils the interchange condition S (q1t1,q2t2) =−S (q2t2,q1t1). Such functions can be used in the construction of quantum‐mechanical Green’s functions. For the Kepler–Coulomb problem, rotational invariance implies that the characteristic function depends on three configuration variables, say r1,r2,r12. The existence of an extra constant of the motion, the Runge–Lenz vector, allows a reduction to two independent variables: x≡r1+r2+r12 and y≡r1+r2−r12. A further reduction is made possible by virtue of a scale symmetry connected with Kepler’s third law. The resulting equations are solved by a double Legendre transformation to yield the Kepler–Coulomb characteristic function in implicit functional form. The periodicity of the characteristic function for elliptical orbits can be applied in a novel derivation of Lambert’s theorem.en_US
dc.format.extent3102 bytes
dc.format.extent282043 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleTwo‐point characteristic function for the Kepler–Coulomb problemen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70864/2/JMAPAQ-16-10-2000-1.pdf
dc.identifier.doi10.1063/1.522430en_US
dc.identifier.sourceJournal of Mathematical Physicsen_US
dc.identifier.citedreferenceSee, for example, J. L. Singe, “Classical Dynamics,” in Handbuch der Physik Vol. III∕1, edited by S. Flügge (Springer, Berlin, 1960), p. 117ff.en_US
dc.identifier.citedreferenceR. P. Feynman, Rev. Mod. Phys. 20, 367 (1948); R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw‐Hill, New York, 1965); S. M. Blinder, Foundations of Quantum Dynamics (Academic, London, 1974), Chap. 6; S. M. Blinder, “Configuration‐Space Green’s Functions,” in International Review of Science, Vol. I, Theoretical Chemistry (Butterworths, London, 1975).en_US
dc.identifier.citedreferenceFor the present status of the problem, see M. J. Goovaerts and J. T. Devreese, J. Math. Phys. 13, 1070 (1972); R. G. Storer, J. Math. Phys. 9, 964 (1968).en_US
dc.identifier.citedreferenceL. Hostler, J. Math. Phys. 5, 591 (1964). The two Green’s functions are related by Fourier transformation as follows: K(r2,r1,t) = limϵ→02π∫−∞∞[G(r2,r1,E+ie)−G(r2,r1,E−iϵ)]e−iEt∕ℏdE.K(r2,r1,t) = limϵ→02π∫−∞∞[G(r2,r1,E+ie)−G(r2,r1,E−iϵ)]e−iEt∕ℏdE.en_US
dc.identifier.citedreferenceC. Runge, Vector Analysis (Dutton, New York, 1919), p. 79; W. Lenz, Z. Phys. 24, 197 (1924); W. Pauli, Z. Phys. 36, 336 (1926) [English translation in B. L. van der Waerden, Sources of Quantum Mechanics (Dover, New York, 1968), p. 387]. See also articles by H. V. McIntosh (p. 75) and C. E. Wulfman (p. 145) in Group Theory and its Applications, Vol. II, edited by E. M. Loebl (Academic, New York, 1971).en_US
dc.identifier.citedreferenceThe properties of the Runge‐Lenz vector can be developed as follows. Start with Newton’s second law for a particle in a Colulomb field: dpdt = −Ze2r3r. Then L×dpdt = −Ze2r3L×r = −Ze2mr3(r×drdt)×r. This works out to ddt(L×p+Ze2mu) = 0, showing that A is a constant of the motion. The equation of the orbit is obtained from A⋅r = Ar cosθ = −(Ze2m)−1L2+r, r = (Ze2m)−1L2∕(1−A cosθ), which represents a conic section. The vector A is directed towards the aphelion of the orbit; its magnitude equals the eccentricity.en_US
dc.identifier.citedreferenceL. Hostler, J. Math. Phys. 8, 642 (1967).en_US
dc.identifier.citedreferenceThis also applies w.r.t. the original position variables: S(ζ2r1,ζ2r2,ζ3t) = ζS(r,r2,t). Newton’s second law for a Coulomb force is likewise invariant under the substitution r→ζ2r,r→ζ2r, t→ζ3t.t→ζ3t. This implies Kepler’s third law of planetary motion, that the period of an orbit is proportional to the three‐halves power of its linear dimension.en_US
dc.identifier.citedreferenceSee, for example, E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Cambridge, U.P., Cambridge, 1965), 4th Ed., p. 91–92.en_US
dc.identifier.citedreferenceSee, for example, H. Goldstein, Classical Mechanics (Addison‐Wesley, Cambridge, Mass., 1950), p. 299ff.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.