Show simple item record

Residual stresses in amorphous alumina films synthesized by ion beam assisted deposition

dc.contributor.authorParfitt, L.en_US
dc.contributor.authorGoldiner, M.en_US
dc.contributor.authorJones, J. Wayneen_US
dc.contributor.authorWas, Gary S.en_US
dc.date.accessioned2010-05-06T22:50:07Z
dc.date.available2010-05-06T22:50:07Z
dc.date.issued1995-04-01en_US
dc.identifier.citationParfitt, L.; Goldiner, M.; Jones, J. W.; Was, G. S. (1995). "Residual stresses in amorphous alumina films synthesized by ion beam assisted deposition." Journal of Applied Physics 77(7): 3029-3036. <http://hdl.handle.net/2027.42/70865>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70865
dc.description.abstractA set of experiments was conducted to determine the origin of residual stresses in amorphous Al2O3 films formed by ion beam assisted deposition. Samples were deposited during bombardment by Ne, Ar, or Kr over a narrow range of energies, E, and a wide range of ion‐to‐atom arrival rate ratios, R. Films were characterized in terms of composition, thickness, density, crystallinity, microstructure, and residual stress. Film composition was independent of ion beam parameters and residual stress was independent of thickness over the range 200–1200 nm. Stress varied strongly with ion beam parameters and gas content. Residual stress and gas content saturated at a normalized energy of ∼20 eV/atom or an R of ∼0.05. Where residual stress varied linearly with RE1/2, results are consistent with an atom peening model, but saturation at high R or RE1/2 is inconsistent with such a model. Stress due to gas pressure in existing voids explains neither the functional dependence on gas content nor the magnitude of the observed stress. A probable explanation for the behavior of stress is gas incorporation into the matrix, where the amount of incorporated gas is controlled by trapping. © 1995 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent1159966 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleResidual stresses in amorphous alumina films synthesized by ion beam assisted depositionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109‐2104en_US
dc.contributor.affiliationumDepartment of Nuclear Engineering, University of Michigan, Ann Arbor, Michigan 48109‐2104en_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109‐2104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70865/2/JAPIAU-77-7-3029-1.pdf
dc.identifier.doi10.1063/1.358652en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceSurface Modification of Metals by Ion Beams, Proceedings of the Seventh International Conference on Surface Modification of Metals by Ion Beams, edited by F. A. Smidt, G. K. Hubler, and B. D. Sartwell (Elsevier Sequoia S. A., Lausanne, 1992).en_US
dc.identifier.citedreferenceSurface Modification of Metals by Ion Beams, Proceedings of the Seventh International Conference on Surface Modification of Metals by Ion Beams, edited by M. Iwaki, B. D. Sartwell, and G. Dearnaley (Elsevier Sequoia S.A., Lausanne, in press).en_US
dc.identifier.citedreferenceH. Windischmann, Crit. Rev. Solid State Mater. Sci. 17, 547 (1992).en_US
dc.identifier.citedreferenceM. F. Doerner and W. D. Nix, Crit. Rev. Solid State Mater. Sci. 14, 225 (1988).en_US
dc.identifier.citedreferenceE. Klokholm, J. Vac. Sci. Technol. 6, 138 (1969).en_US
dc.identifier.citedreferenceF. M. D’Heurle and J. M. E. Harper, Thin Solid Films 171, 81 (1989).en_US
dc.identifier.citedreferenceE. H. Hirsch and I. K. Varga, Thin Solid Films 69, 99 (1980).en_US
dc.identifier.citedreferenceF. Seitz and J. S. Koehler, Solid State Phys. 69, 3Q5 (1956).en_US
dc.identifier.citedreferenceD. W. Hoffman and J. A. Thornton, Thin Solid Films 40, 355 (1977).en_US
dc.identifier.citedreferenceH. Windischmann, J. Appl. Phys. 65, 1800 (1987).en_US
dc.identifier.citedreferenceP. Sigmund, Topics in Applied Physics: Sputtering by Ion Bombardment, edited by R. Behrisch (Springer, Berlin, 1981), Vol. 47.en_US
dc.identifier.citedreferenceJ. A. Thornton, J. Tabock, and D. W. Hoffman, Thin Solid Films 64, 111 (1979).en_US
dc.identifier.citedreferenceV. Dietz, P. Ehrhart, D. Guggi, H.-G. Haubold, W. Jäger, M. Prieler, and W. Schilling, Nucl. Instrum. Methods Phys. Res. B 59∕60, 284 (1991).en_US
dc.identifier.citedreferenceC. C. Fang, F. Jones, and V. Prasad, J. Appl. Phys. 74, 4472 (1993).en_US
dc.identifier.citedreferenceD. W. Hoffman and M. R. Gaerttner, J. Vac. Sci. Technol. 17, 425 (1980).en_US
dc.identifier.citedreferenceJ. A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974).en_US
dc.identifier.citedreferenceL. R. Dolittle, Nucl. Instrum. Methods Phys. Res. B 9, 334 (1985).en_US
dc.identifier.citedreferenceC. J. Brinker and S. P. Mukherji, Thin Solid Films 77, 141 (1981).en_US
dc.identifier.citedreferenceJ. A. Thornton, J. Tabock, and D. W. Hoffman, Thin Solid Films 64, 111 (1979).en_US
dc.identifier.citedreferenceJ. M. E. Harper, J. J. Cuomo, R. J. Gambino, and H. R. Kaufman, Nucl. Instrum. Methods Phys. Res. B 7∕8, 886 (1985).en_US
dc.identifier.citedreferenceK. Kuwahara, T. Sumomogi, and M. Kondo, Thin Solid Films 78, 41 (1981).en_US
dc.identifier.citedreferenceJ. A. Thornton and D. W. Hoffman, Thin Solid Films 171, 5 (1989).en_US
dc.identifier.citedreferenceA. Guinier and G. Fournet, Small-Angle Scattering of X-Rays (Wiley, New York, 1956).en_US
dc.identifier.citedreferenceG. Porod, “General Theory,” in Small-Angle X-ray Scattering, edited by O. Glatter and O. Kratky (Academic, London, 1982).en_US
dc.identifier.citedreferenceO. Kratky, I. Pilz, and P. J. Schmitz, J. Colloid Interface Sci. 21, 24 (1966).en_US
dc.identifier.citedreferenceD. S. Lee, J. Floro, D. J. Nikalsen, J. J. Cuomo, K. Y. Ahn, and D. A. Smith, J. Vac. Sci. Technol. A 3, 2121 (1985).en_US
dc.identifier.citedreferenceD. R. Brighton and G. K. Hubler, Nucl. Instrum. Methods Phys. B 28, 527 (1987).en_US
dc.identifier.citedreferenceP. R. Kazansky, L. Hultman, I. Ivanov, and J.-E. Sundgren, J. Vac. Sci. Technol. A 11, 1426 (1993).en_US
dc.identifier.citedreferenceB. N. Lucas and W. C. Oliver, Material Research Society Symposium (Materials Research Society, Pittsburgh, PA, 1992), Vol. 239, pp. 337–341.en_US
dc.identifier.citedreferenceC. Ronchi, J. Nucl. Mater. 96, 314 (1981).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.