Show simple item record

Microwave spectrum, structure, barrier to internal rotation, dipole moment, and deuterium quadupole coupling constants of the ethylene–sulfur dioxide complex

dc.contributor.authorAndrews, Anne M.en_US
dc.contributor.authorTaleb‐bendiab, Amineen_US
dc.contributor.authorLaBarge, Marabeth S.en_US
dc.contributor.authorHillig, Kurt W. IIen_US
dc.contributor.authorKuczkowski, Robert L.en_US
dc.date.accessioned2010-05-06T22:52:40Z
dc.date.available2010-05-06T22:52:40Z
dc.date.issued1990-11-15en_US
dc.identifier.citationAndrews, Anne M.; Taleb‐Bendiab, Amine; LaBarge, Marabeth S.; Hillig, Kurt W.; Kuczkowski, Robert L. (1990). "Microwave spectrum, structure, barrier to internal rotation, dipole moment, and deuterium quadupole coupling constants of the ethylene–sulfur dioxide complex." The Journal of Chemical Physics 93(10): 7030-7040. <http://hdl.handle.net/2027.42/70892>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70892
dc.description.abstractThe microwave spectra of the complex between ethylene and sulfur dioxide and nine of its isotopic species have been observed in a Fourier transform microwave spectrometer. The spectra exhibit a and c dipole selection rules; transitions of the normal species and several of the isotopically substituted species occur as tunneling doublets. The complex has a stacked structure with Cs symmetry; the C2H4 and SO2 moieties both straddle the mirror plane with the C2 axis of SO2 crossed at 90 ° to the carbon–carbon bond axis (i.e., only the S atom lies in the symmetry plane). The distance between the centers of mass (Rcm) of C2H4 and SO2 is 3.504(1) Å and the deviation of their planes from perpendicular to Rcm is 21(2) ° and 12(2) °, respectively. The tunneling splittings arise from a rotation of the ethylene subunit in its molecular plane. The barrier to internal rotation is 30(2) cm−1. The dipole moment of the complex is 1.650(3)D. The deuterium nuclear quadrupole coupling constants for C2H3D⋅SO2 are χaa=−0.119(1) MHz, χbb=0.010(1) MHz, and χcc=0.109(1) MHz. The binding energy is estimated to be 490 cm−1 from the pseudo‐diatomic approximation. A distributed multipole electrostatic model is explored to rationalize the structure and binding energies.en_US
dc.format.extent3102 bytes
dc.format.extent870030 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleMicrowave spectrum, structure, barrier to internal rotation, dipole moment, and deuterium quadupole coupling constants of the ethylene–sulfur dioxide complexen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109‐1055en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70892/2/JCPSA6-93-10-7030-1.pdf
dc.identifier.doi10.1063/1.459425en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreference(a) I. Hanazaki, J. Phys. Chem. 76, 1982 (1972); (b) D. Booth, F. S. Dainton, and K. J. Ivin, Trans. Faraday Soc. 55, 1293 (1959).en_US
dc.identifier.citedreference(a) L. J. Andrews and R. M. Keefer, J. Am. Chem. Soc. 73, 4169 (1951); (b) L. J. Andrews, Chem. Rev. 54, 713 (1954).en_US
dc.identifier.citedreference(a) L. Fredin, Chem. Scr. 497 (1973); (b) L. Nord, J. Mol. Struct. 96, 27 (1982).en_US
dc.identifier.citedreference(a) J. S. Muenter, R. L. DeLeon, and A. Yokozeki, Faraday Discuss. Chem. Soc. 73, 63 (1982); (b) R. L. DeLeon and J. S. Muenter, Atmos. Environ. 18, 995 (1984).en_US
dc.identifier.citedreferenceM. S. LaBarge, K. W. Hillig II, and R. L. Kuczkowski, Angew. Chem. Int. Engl. Ed. 27, 1356 (1988).en_US
dc.identifier.citedreferenceJ. Z. Gillies, C. W. Gillies, R. D. Suenram, F. J. Lovas, and W. Stahl, J. Am. Chem. Soc. 111, 3073 (1989).en_US
dc.identifier.citedreferenceA. D. Buckingham and P. W. Fowler, Can. J. Chem. 63, 2018 (1985).en_US
dc.identifier.citedreferenceP. A. Kollman, Acc. Chem. Res. 10, 365 (1977).en_US
dc.identifier.citedreferenceK. Morokuma, Acc. Chem. Res. 10, 294 (1977).en_US
dc.identifier.citedreferenceT. J. Balle and W. H. Flygare, Rev. Sci. Instrum. 52, 33 (1981).en_US
dc.identifier.citedreferenceK. W. Hillig II, J. Matos, A. Scioly, and R. L. Kuczkowski, Chem. Phys. Lett. 133, 359 (1987).en_US
dc.identifier.citedreferenceR. K. Bohn, K. W. Hillig II, and R. L. Kuczkowski, J. Phys. Chem. 93, 3456 (1989).en_US
dc.identifier.citedreferenceK. Tanaka, H. Ito, K. Harada, and T. Tanaka, J. Phys. Chem. 80, 5893 (1984).en_US
dc.identifier.citedreferenceJ. K. G. Watson, J. Chem. Phys. 46, 1935 (1967).en_US
dc.identifier.citedreferenceJ. K. Rice, L. H. Coudert, K. Matsumura, R. D. Suenram, F. J. Lovas, W. Stahl, D. J. Pauley, and S. G. Kukolich, J. Chem. Phys. 92, 6408 (1990).en_US
dc.identifier.citedreferenceSee AIP Document no. PAPS JCPSA‐93‐7030‐12 for 12 pages of tables of C2H4SO2.C2H4SO2. Order by PAPS number and journal reference from American Institute of Physics, Physics Auxiliary Publication Service, 335 E. 45th Street, New York, NY 10017.en_US
dc.identifier.citedreferenceT. R. Dyke, B. J. Howard, and W. Klemperer, J. Chem. Phys. 56, 2442 (1972).en_US
dc.identifier.citedreferenceH. S. Gutowsky, C. Chuang, J. D. Keen, T. D. Klots, and T. Emilsson, J. Chem. Phys. 83, 2070 (1985).en_US
dc.identifier.citedreferenceM. D. Harmony, V. W. Laurie, R. L. Kuczkowski, R. H. Schwendeman, D. A. Ramsay, F. J. Lovas, W. J. Lafferty and A. G. Maki, J. Chem. Phys. Ref. Data 8, 619 (1979).en_US
dc.identifier.citedreferenceF. J. Lovas, J. Chem. Phys. Ref. Data 14, 395 (1985).en_US
dc.identifier.citedreferenceApparently, the dipole moment of cis‐C2H2D2cis‐C2H2D2 has not been determined. The value for 1,1‐C2H2D21,1‐C2H2D2 is 0.0091D. E. Hirota, Y. Endo, S. Saito, K. Yoshida, I. Yamaguchi, and K. Mochida, J. Mol. Spectrosc. 89, 223 (1981).en_US
dc.identifier.citedreferenceA. Taleb‐Bendiab, M. S. LaBarge, L. L. Lohr, R. C. Taylor, K. W. Hillig II, R. L. Kuczkowski, and R. K. Bohn, J. Chem. Phys. 90, 6949 (1989).en_US
dc.identifier.citedreferenceJ. M. Frisch, J. S. Binkley, H. B. Schlegel, K. Raghavachari, C. F. Melius, R. L. Martin, J. J. P. Stewart, F. W. Bobrowicz, C. M. Rohlfing, L. R. Kahn, D. J. DeFrees, R. Seeger, R. A. Whiteside, D. J. Fox, E. M. Fluder, and J. A. Pople, GAUSSIAN 86 (Carnegie‐Mellon Quantum Chemistry Publishing Unit, Pittsburgh, PA, 1986).en_US
dc.identifier.citedreference(a) Y. Chen and T. Oka, J. Chem. Phys. 88, 5282 (1988); (b) W. F. Murphy, J. Raman Spectrosc. 11, 339 (1981).en_US
dc.identifier.citedreferenceR. L. DeLeon, A. Yokozeki, and J. S. Muenter, J. Chem. Phys. 73, 2044 (1980).en_US
dc.identifier.citedreferenceN. Ohashi and A. S. Pine, J. Chem. Phys. 81, 73 (1984).en_US
dc.identifier.citedreferenceJ. D. Swalen and D. R. Herschbach, J. Chem. Phys. 27, 100 (1957).en_US
dc.identifier.citedreference(a) C. R. Quade and C. C. Lin, J. Chem. Phys. 38, 540 (1963); (b) C. R. Quade, J. Chem. Phys. 47, 1073 (1967).en_US
dc.identifier.citedreferenceD. R. Herschbach, J. Chem. Phys. 31, 91 (1959).en_US
dc.identifier.citedreferenceR. H. Schwendeman, Critical Evaluation of Chemical and Physical Structural Information; edited by D. R. Lide and M. A. Paul (National Academy of Sciences, Washington, D.C., 1974), pp. 74–115.en_US
dc.identifier.citedreferenceW. Gordy and R. L. Cook, Molecular Microwave Spectra (Wiley, New York, 1984), pp. 413–418.en_US
dc.identifier.citedreferenceL. Pauling, The Nature of the Chemical Bond (Cornell University, Ithaca, NY, 1960), p. 260.en_US
dc.identifier.citedreferenceD. J. Millen, Can. J. Chem. 63, 1477 (1985).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.