Show simple item record

A relationship between semiclassical and centroid correlation functions

dc.contributor.authorShi, Qiangen_US
dc.contributor.authorGeva, Eitanen_US
dc.date.accessioned2010-05-06T22:55:02Z
dc.date.available2010-05-06T22:55:02Z
dc.date.issued2003-05-08en_US
dc.identifier.citationShi, Qiang; Geva, Eitan (2003). "A relationship between semiclassical and centroid correlation functions." The Journal of Chemical Physics 118(18): 8173-8184. <http://hdl.handle.net/2027.42/70917>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70917
dc.description.abstractA general relationship is established between semiclassical and centroid-based methods for calculating real-time quantum-mechanical correlation functions. It is first shown that the linearized semiclassical initial-value-representation (LSC-IVR) approximation can be obtained via direct linearization of the forward-backward action in the exact path integral expression for the correlation function. A Kubo-transformed two-time correlation function, with the position operator as one of the two operators, is then cast in terms of a carefully crafted exact path integral expression. Linearization of the corresponding forward–backward action, supplemented by the assumption that the dynamics of the centroid is decoupled from that of the higher normal modes, is then shown to lead to the centroid correlation function.© 2003 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent157305 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleA relationship between semiclassical and centroid correlation functionsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry and The FOCUS Center, University of Michigan, Ann Arbor, Michigan 48109-1055en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70917/2/JCPSA6-118-18-8173-1.pdf
dc.identifier.doi10.1063/1.1564814en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceD. A. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1976).en_US
dc.identifier.citedreferenceR. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II—Nonequilibrium Statistical Mechanics (Springer-Verlag, Berlin, 1983).en_US
dc.identifier.citedreferenceD. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, New York, 1987).en_US
dc.identifier.citedreferenceM. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).en_US
dc.identifier.citedreferenceB. J. Berne, G. Ciccotti, and D. F. Coker, Eds., Classical and Quantum Dynamics in Condensed Phase Simulations (World Scientific, New Jersey, 1998).en_US
dc.identifier.citedreferenceS. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, New York, 1995).en_US
dc.identifier.citedreferenceN. Makri, Annu. Rev. Phys. Chem. ARPLAP50, 167 (1999).en_US
dc.identifier.citedreferenceG. D. Billing, Chem. Phys. Lett. CHPLBC30, 391 (1975).en_US
dc.identifier.citedreferenceG. D. Billing, J. Chem. Phys. JCPSA699, 5849 (1993).en_US
dc.identifier.citedreferenceJ. C. Tully and R. K. Preston, J. Chem. Phys. JCPSA655, 562 (1971).en_US
dc.identifier.citedreferenceJ. C. Tully, J. Chem. Phys. JCPSA693, 1061 (1990).en_US
dc.identifier.citedreferenceP. J. Kuntz, J. Chem. Phys. JCPSA695, 141 (1991).en_US
dc.identifier.citedreferenceA. I. Krylov et al., J. Chem. Phys. JCPSA6104, 3651 (1996).en_US
dc.identifier.citedreferenceJ. Poulsen and P. J. Rossky, J. Chem. Phys. JCPSA6115, 8014 (2001).en_US
dc.identifier.citedreferenceK. Yamashita and W. H. Miller, J. Chem. Phys. JCPSA682, 5475 (1985).en_US
dc.identifier.citedreferenceE. Gallicchio and B. J. Berne, J. Chem. Phys. JCPSA6105, 7064 (1996).en_US
dc.identifier.citedreferenceE. Gallicchio, S. A. Egorov, and B. J. Berne, J. Chem. Phys. JCPSA6109, 7745 (1998).en_US
dc.identifier.citedreferenceS. A. Egorov, E. Gallicchio, and B. J. Berne, J. Chem. Phys. JCPSA6107, 9312 (1997).en_US
dc.identifier.citedreferenceG. Krilov and B. J. Berne, J. Chem. Phys. JCPSA6111, 9147 (1999).en_US
dc.identifier.citedreferenceE. Rabani, G. Krilov, and B. J. Berne, J. Chem. Phys. JCPSA6112, 2605 (2000).en_US
dc.identifier.citedreferenceE. Sim, G. Krilov, and B. Berne, J. Phys. Chem. A JPCAFH105, 2824 (2001).en_US
dc.identifier.citedreferenceJ. Cao and G. A. Voth, J. Chem. Phys. JCPSA6100, 5093 (1994).en_US
dc.identifier.citedreferenceJ. Cao and G. A. Voth, J. Chem. Phys. JCPSA6100, 5106 (1994).en_US
dc.identifier.citedreferenceJ. Cao and G. A. Voth, J. Chem. Phys. JCPSA6101, 6157 (1994).en_US
dc.identifier.citedreferenceJ. Cao and G. A. Voth, J. Chem. Phys. JCPSA6101, 6168 (1994).en_US
dc.identifier.citedreferenceJ. Cao and G. A. Voth, J. Chem. Phys. JCPSA6101, 6184 (1994).en_US
dc.identifier.citedreferenceG. A. Voth, Adv. Chem. Phys. ADCPAA93, 135 (1996).en_US
dc.identifier.citedreferenceS. Jang and G. A. Voth, J. Chem. Phys. JCPSA6111, 2357 (1999).en_US
dc.identifier.citedreferenceS. Jang and G. A. Voth, J. Chem. Phys. JCPSA6111, 2371 (1999).en_US
dc.identifier.citedreferenceD. R. Reichman, P.-N. Roy, S. Jang, and G. A. Voth, J. Chem. Phys. JCPSA6113, 919 (2000).en_US
dc.identifier.citedreferenceA. Calhoun, M. Pavese, and G. A. Voth, Chem. Phys. Lett. CHPLBC262, 415 (1996).en_US
dc.identifier.citedreferenceU. W. Schmitt and G. A. Voth, J. Chem. Phys. JCPSA6111, 9361 (1999).en_US
dc.identifier.citedreferenceM. Pavese and G. A. Voth, Chem. Phys. Lett. CHPLBC249, 231 (1996).en_US
dc.identifier.citedreferenceK. Kinugawa, P. B. Moore, and M. L. Klein, J. Chem. Phys. JCPSA6106, 1154 (1997).en_US
dc.identifier.citedreferenceK. Kinugawa, P. B. Moore, and M. L. Klein, J. Chem. Phys. JCPSA6109, 610 (1998).en_US
dc.identifier.citedreferenceK. Kinugawa, Chem. Phys. Lett. CHPLBC292, 454 (1998).en_US
dc.identifier.citedreferenceM. Pavese, D. R. Bernard, and G. A. Voth, Chem. Phys. Lett. CHPLBC300, 93 (1999).en_US
dc.identifier.citedreferenceS. Jang, Y. Pak, and G. A. Voth, J. Phys. Chem. A JPCAFH103, 10289 (1999).en_US
dc.identifier.citedreferenceR. Ramirez, T. Lopez-Ciudad, and J. C. Noya, Phys. Rev. Lett. PRLTAO81, 3303 (1998).en_US
dc.identifier.citedreferenceR. Ramirez and T. Lopez-Ciudad, Phys. Rev. Lett. PRLTAO83, 4456 (1999).en_US
dc.identifier.citedreferenceR. Ramirez and T. Lopez-Ciudad, J. Chem. Phys. JCPSA6111, 3339 (1999).en_US
dc.identifier.citedreferenceT. Lopez-Ciudad and R. Ramirez, J. Chem. Phys. JCPSA6113, 10849 (2000).en_US
dc.identifier.citedreferenceJ. Poulsen, S. R. Keiding, and P. J. Rossky, Chem. Phys. Lett. CHPLBC336, 488 (2001).en_US
dc.identifier.citedreferenceJ. Poulsen and P. J. Rossky, J. Chem. Phys. JCPSA6115, 8024 (2001).en_US
dc.identifier.citedreferenceE. Geva, Q. Shi, and G. A. Voth, J. Chem. Phys. JCPSA6115, 9209 (2001).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva, J. Chem. Phys. JCPSA6116, 3223 (2002).en_US
dc.identifier.citedreferenceH. Wang, X. Sun, and W. H. Miller, J. Chem. Phys. JCPSA6108, 9726 (1998).en_US
dc.identifier.citedreferenceE. Pollak and J. Liao, J. Chem. Phys. JCPSA6108, 2733 (1998).en_US
dc.identifier.citedreferenceW. H. Miller, Adv. Chem. Phys. ADCPAA25, 69 (1974).en_US
dc.identifier.citedreferenceW. H. Miller, J. Chem. Phys. JCPSA653, 3578 (1970).en_US
dc.identifier.citedreferenceM. F. Herman and E. Kluk, Chem. Phys. CMPHC291, 27 (1984).en_US
dc.identifier.citedreferenceE. J. Heller, J. Chem. Phys. JCPSA694, 2723 (1981).en_US
dc.identifier.citedreferenceK. G. Kay, J. Chem. Phys. JCPSA6100, 4377 (1994).en_US
dc.identifier.citedreferenceM. Ovchinnikov and V. A. Apkarian, J. Chem. Phys. JCPSA6105, 10312 (1996).en_US
dc.identifier.citedreferenceM. Ovchinnikov and V. A. Apkarian, J. Chem. Phys. JCPSA6108, 2277 (1998).en_US
dc.identifier.citedreferenceX. Sun and W. H. Miller, J. Chem. Phys. JCPSA6106, 916 (1997).en_US
dc.identifier.citedreferenceN. Makri and K. Thompson, Chem. Phys. Lett. CHPLBC291, 101 (1998).en_US
dc.identifier.citedreferenceW. H. Miller, Faraday Discuss. FDISE6110, 1 (1998).en_US
dc.identifier.citedreferenceJ. S. Shao and N. Makri, J. Phys. Chem. A JPCAFH103, 7753 (1999).en_US
dc.identifier.citedreferenceK. Thompson and N. Makri, Phys. Rev. E PLEEE859, R4729 (1999).en_US
dc.identifier.citedreferenceO. Kühn and N. Makri, J. Phys. Chem. A JPCAFH103, 9487 (1999).en_US
dc.identifier.citedreferenceH. Wang, M. Thoss, and W. H. Miller, J. Chem. Phys. JCPSA6112, 47 (2000).en_US
dc.identifier.citedreferenceM. Ovchinnikov, V. A. Apkarian, and G. A. Voth, J. Chem. Phys. JCPSA6184, 7130 (2001).en_US
dc.identifier.citedreferenceW. H. Miller, J. Phys. Chem. A JPCAFH105, 2942 (2001).en_US
dc.identifier.citedreferenceN. Makri and W. H. Miller, J. Chem. Phys. JCPSA6116, 9207 (2002).en_US
dc.identifier.citedreferenceB. J. Berne and D. Thirumalai, Annu. Rev. Phys. Chem. ARPLAP37, 401 (1986).en_US
dc.identifier.citedreferenceD. M. Ceperley, Rev. Mod. Phys. RMPHAT67, 279 (1995).en_US
dc.identifier.citedreferenceJ. H. V. Vleck, Proc. Natl. Acad. Sci. U.S.A. PNASA614, 178 (1928).en_US
dc.identifier.citedreferenceM. C. Gutzwiller, J. Math. Phys. JMAPAQ8, 1979 (1967).en_US
dc.identifier.citedreferenceM. C. Gutzwiller, J. Math. Phys. JMAPAQ12, 343 (1971).en_US
dc.identifier.citedreferenceM. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-Verlag, Berlin, 1990).en_US
dc.identifier.citedreferenceR. G. Littlejohn, J. Stat. Phys. JSTPBS68, 7 (1992).en_US
dc.identifier.citedreferenceP. Pechukas, Phys. Rev. PHRVAO181, 174 (1969).en_US
dc.identifier.citedreferenceS. Levit and U. Smilansky, Ann. Phys. (N.Y.) APNYA6108, 165 (1977).en_US
dc.identifier.citedreferenceS. Levit, K. Mohring, U. Smilansky, and T. Dreyfus, Ann. Phys. (N.Y.) APNYA6114, 223 (1978).en_US
dc.identifier.citedreferenceV. P. Maslov and M. V. Fedoriouk, Semi-Classical Approximation in Quantum Mechanics (Reidel, Boston, 1981).en_US
dc.identifier.citedreferenceW. H. Miller, J. Chem. Phys. JCPSA695, 9428 (1991).en_US
dc.identifier.citedreferenceE. J. Heller, J. Chem. Phys. JCPSA695, 9431 (1991).en_US
dc.identifier.citedreferenceE. Kluk, M. F. Herman, and H. L. Davis, J. Chem. Phys. JCPSA684, 326 (1986).en_US
dc.identifier.citedreferenceK. G. Kay, J. Chem. Phys. JCPSA6101, 2250 (1994).en_US
dc.identifier.citedreferenceD. Provost and P. Brumer, Phys. Rev. Lett. PRLTAO74, 250 (1995).en_US
dc.identifier.citedreferenceS. Garashchuk and D. Tannor, Chem. Phys. Lett. CHPLBC262, 477 (1996).en_US
dc.identifier.citedreferenceS. Keshavamurthy and W. H. Miller, Chem. Phys. Lett. CHPLBC218, 183 (1994).en_US
dc.identifier.citedreferenceB. W. Spath and W. H. Miller, J. Chem. Phys. JCPSA6104, 95 (1996).en_US
dc.identifier.citedreferenceJ. D. Doll, D. L. Freeman, and T. L. Beck, Adv. Chem. Phys. ADCPAA78, 61 (1990).en_US
dc.identifier.citedreferenceV. S. Filinov, Nucl. Phys. B NUPBBO271, 717 (1986).en_US
dc.identifier.citedreferenceN. Makri and W. H. Miller, Chem. Phys. Lett. CHPLBC139, 10 (1987).en_US
dc.identifier.citedreferenceA. R. Walton and D. E. Manolopoalos, Mol. Phys. MOPHAM87, 961 (1996).en_US
dc.identifier.citedreferenceX. Sun and W. H. Miller, J. Chem. Phys. JCPSA6108, 8870 (1998).en_US
dc.identifier.citedreferenceX. Sun and W. H. Miller, J. Chem. Phys. JCPSA6110, 6635 (1999).en_US
dc.identifier.citedreferenceH. Wang, D. E. Manolopoulos, and W. H. Miller, J. Chem. Phys. JCPSA6115, 6317 (2001).en_US
dc.identifier.citedreferenceX. Sun, H. Wang, and W. H. Miller, J. Chem. Phys. JCPSA6109, 4190 (1998).en_US
dc.identifier.citedreferenceX. Sun, H. Wang, and W. H. Miller, J. Chem. Phys. JCPSA6109, 7064 (1998).en_US
dc.identifier.citedreferenceH. Wang, X. Song, D. Chandler, and W. H. Miller, J. Chem. Phys. JCPSA6110, 4828 (1999).en_US
dc.identifier.citedreferenceW. H. Miller, J. Phys. Chem. A JPCAFH103, 9384 (1999).en_US
dc.identifier.citedreferenceJ. S. Shao, J. L. Liao, and E. Pollak, J. Chem. Phys. JCPSA6108, 9711 (1998).en_US
dc.identifier.citedreferenceJ. L. Liao and E. Pollak, Chem. Phys. CMPHC2268, 295 (2001).en_US
dc.identifier.citedreferenceM. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. PRPLCM106, 121 (1984).en_US
dc.identifier.citedreferenceK. Thompson and N. Makri, J. Chem. Phys. JCPSA613, 1343 (1999).en_US
dc.identifier.citedreferenceK. Thompson and N. Makri, J. Chem. Phys. JCPSA659, R4729 (1999).en_US
dc.identifier.citedreferenceV. S. Batista et al., J. Chem. Phys. JCPSA6110, 3736 (1999).en_US
dc.identifier.citedreferenceM. Thoss, H. Wang, and W. H. Miller, J. Chem. Phys. JCPSA6114, 9220 (2001).en_US
dc.identifier.citedreferenceF. Grossmann, Chem. Phys. Lett. CHPLBC262, 470 (1996).en_US
dc.identifier.citedreferenceM. Thoss and W. H. Miller, J. Chem. Phys. JCPSA6112, 10282 (2000).en_US
dc.identifier.citedreferenceE. A. Coronado, J. Xing, and W. H. Miller, Chem. Phys. Lett. CHPLBC349, 521 (2001).en_US
dc.identifier.citedreferenceA. R. Walton and D. E. Manolopoalos, Chem. Phys. Lett. CHPLBC244, 448 (1995).en_US
dc.identifier.citedreferenceB. W. Spath and W. H. Miller, Chem. Phys. Lett. CHPLBC262, 486 (1996).en_US
dc.identifier.citedreferenceV. S. Batista and W. H. Miller, J. Chem. Phys. JCPSA6108, 498 (1998).en_US
dc.identifier.citedreferenceM. L. Brewer, J. S. Hulme, and D. E. Manolopoulos, J. Chem. Phys. JCPSA6106, 4832 (1997).en_US
dc.identifier.citedreferenceH. Wang et al., J. Chem. Phys. JCPSA6114, 2562 (2001).en_US
dc.identifier.citedreferenceM. Topaler and N. Makri, J. Chem. Phys. JCPSA6101, 7500 (1994).en_US
dc.identifier.citedreferenceL. S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981).en_US
dc.identifier.citedreferenceR. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).en_US
dc.identifier.citedreferenceH. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics (World Scientific, New Jersey, 1995).en_US
dc.identifier.citedreferenceR. P. Feynman, Statistical Mechanics (Benjamin, New York, 1972).en_US
dc.identifier.citedreferenceQ. Shi and E. Geva (unpublished).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.