Show simple item record

Temperature dependence of the magnetization reversal in Co(fcc)–BN–Co(poly hcp) structures

dc.contributor.authorPust, Ladislaven_US
dc.contributor.authorWenger, Lowell E.en_US
dc.contributor.authorLukaszew, Rosa A.en_US
dc.contributor.authorSheng, Yongningen_US
dc.contributor.authorLitvinov, Dmitrien_US
dc.contributor.authorWang, Yonghuaen_US
dc.contributor.authorUher, Ctiraden_US
dc.contributor.authorClarke, Royen_US
dc.date.accessioned2010-05-06T23:00:41Z
dc.date.available2010-05-06T23:00:41Z
dc.date.issued1999-04-15en_US
dc.identifier.citationPust, Ladislav; Wenger, Lowell E.; Lukaszew, Rosa A.; Sheng, Yongning; Litvinov, Dmitri; Wang, Yonghua; Uher, Ctirad; Clarke, Roy (1999). "Temperature dependence of the magnetization reversal in Co(fcc)–BN–Co(poly hcp) structures." Journal of Applied Physics 85(8): 5765-5767. <http://hdl.handle.net/2027.42/70977>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70977
dc.description.abstractThe magnetic properties of multilayer structures with two magnetic layers of the same metal (Co) but with different crystallographic structures separated by an insulating BN layer have been studied. These structures were prepared on Si (001) substrates by a combination of molecular beam epitaxy (metallic layers) and electron cyclotron resonance-assisted sputtering (BN layer). An fcc Co single-crystal layer (60 Å) was first stabilized by growing it on a copper fcc buffer layer and subsequently a polycrystalline Co layer (70 Å) with hcp structure was grown on top of the insulating BN layer. A CoO antiferromagnetic layer, formed adjacent to this hcp Co layer, significantly influenced the magnetic behavior of the polycrystalline hcp Co layer. The magnetic hysteresis loops for these structures were measured at temperatures ranging from 5 to 350 K with the magnetic field applied along the easy (110) in-plane axis of the fcc Co. A very sharp flipping of the magnetization was found for the fcc Co layer with a nearly temperature-independent coercive field that increased from 14 mT below 100 K to 16 mT at 300 K. In contrast, the magnetization reversal in the hcp Co layer was smoother and its coercivity varied significantly with temperature depending on the strength of the exchange coupling with the adjacent CoO layer. At 5 K the coercivity was greater than 0.2 T and decreased with increasing temperature, becoming essentially zero above room temperature. When cooling in a magnetic field, an exchange offset was observed below 150 K that increased to about 0.1 T at 5 K.© 1999 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent76165 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleTemperature dependence of the magnetization reversal in Co(fcc)–BN–Co(poly hcp) structuresen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Physics and Astronomy, Wayne State University, Detroit, Michigan 48202en_US
dc.contributor.affiliationumRandall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70977/2/JAPIAU-85-8-5765-1.pdf
dc.identifier.doi10.1063/1.370119en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceM. Julliere, Phys. Lett. PYLAAG54A, 225 (1975).en_US
dc.identifier.citedreferenceJ. C. Slonczewski, Phys. Rev. B PRBMDO39, 6995 (1989).en_US
dc.identifier.citedreferenceJ. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. PRLTAO74, 3273 (1995); J. S. Moodera and L. R. Kinder, J. Appl. Phys. JAPIAU79, 4724 (1996); J. S. Moodera, L. R. Kinder, J. Nowak, P. LeClair, and R. Meservey, Appl. Phys. Lett. APPLAB69, 708 (1996).en_US
dc.identifier.citedreferenceW. J. Gallagher, S. S. P. Parkin, Yu Lu, X. P. Bian, A. Marley, K. P. Roche, R. A. Altman, S. A. Rishton, C. Jahnes, T. M. Shaw, and G. Xiao, J. Appl. Phys. JAPIAU81, 3741 (1997).en_US
dc.identifier.citedreferenceJ. F. Bobo, F. B. Mancoff, K. Bessho, M. Sharma, K. Sin, D. Guarisco, S. X. Wang, and B. M. Clemens, J. Appl. Phys. JAPIAU83, 6685 (1998).en_US
dc.identifier.citedreferenceR. A. Lukaszew, Y. Sheng, C. Uher, and R. Clarke (to be published).en_US
dc.identifier.citedreferenceS. Spagna, M. B. Maple, and R. E. Sager, J. Appl. Phys. JAPIAU79, 4926 (1996).en_US
dc.identifier.citedreferenceB. G. Demczyk, R. Naik, G. Auner, C. Kota, and U. Rao, J. Appl. Phys. JAPIAU75, 1956 (1994).en_US
dc.identifier.citedreferenceB. G. Demczyk, V. M. Naik, R. A. Lukaszew, R. Naik, and G. Auner, J. Appl. Phys. JAPIAU80, 5035 (1996).en_US
dc.identifier.citedreferenceC. Schlenker, Phys. Status Solidi PHSSAK28, 507 (1968).en_US
dc.identifier.citedreferenceL. Smardz, U. Koebler, and W. Zinn, J. Appl. Phys. JAPIAU71, 5199 (1992).en_US
dc.identifier.citedreferenceR. A. Lukaszew, R. Naik, K. R. Mauntfield, and J. O. Artman, J. Appl. Phys. JAPIAU79, 4787 (1996).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.