Show simple item record

Electric Field Gradients at 57Fe in ZnFe2O4 and CdFe2O4

dc.contributor.authorEvans, B. J.en_US
dc.contributor.authorHafner, S. S.en_US
dc.contributor.authorWeber, H. P.en_US
dc.date.accessioned2010-05-06T23:02:07Z
dc.date.available2010-05-06T23:02:07Z
dc.date.issued1971-12-01en_US
dc.identifier.citationEvans, B. J.; Hafner, S. S.; Weber, H. P. (1971). "Electric Field Gradients at 57Fe in ZnFe2O4 and CdFe2O4." The Journal of Chemical Physics 55(11): 5282-5288. <http://hdl.handle.net/2027.42/70992>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70992
dc.description.abstractThe nuclear quadrupole coupling constants and isomer shifts of 57Fe in the spinels ZnFe2O4 and CdFe2O4 were measured using the Mössbauer effect. The signs of the quadrupole coupling constants were determined from spectra which were taken in an applied magnetic field. The sign is negative in both spinels. The isomer shifts and Fe☒O distances indicate that Fe3+ in ZnFe2O4 is somewhat more covalently bonded than in CdFe2O4. The external field gradients at the Fe3+ positions can be interpreted in terms of the ionic point‐multipole model modified by some charge transfer between oxygen and the cations. The point charge contribution to the field gradient is positive in case of ZnFe2O4 and nearly zero in case of CdFe2O4; the predominant contribution is due to the electric dipole moments of the oxygen ions and is negative. The dipole polarizability of the oxygen ion which gave the best fit is αD = 0.8 Å3αD=0.8Å3. The effect of charge transfer on the ionic field gradient is small.en_US
dc.format.extent3102 bytes
dc.format.extent471871 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleElectric Field Gradients at 57Fe in ZnFe2O4 and CdFe2O4en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Geology and Mineralogy, The University of Michigan, Ann Arbor, Michigan 48104en_US
dc.contributor.affiliationotherDepartment of the Geophysical Sciences, The University of Chicago, Chicago, Illinois 60637en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70992/2/JCPSA6-55-11-5282-1.pdf
dc.identifier.doi10.1063/1.1675668en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceA. Hudson and H. J. Whitfield, Mol. Phys. 12, 165 (1967).en_US
dc.identifier.citedreferenceC. M. Yagnik and H. B. Mathur, Mol. Phys. 16, 625 (1969).en_US
dc.identifier.citedreferenceT. Mizoguchi and M. Tanaka, J. Phys. Soc. Japan 18, 1301 (1963).en_US
dc.identifier.citedreferenceH. B. Mathur, A. P. B. Sinha, and C. M. Yagnik, Indian J. Pure Appl. Phys. 5, 155 (1967).en_US
dc.identifier.citedreferenceE. J. W. Verwey and E. L. Heilmann, J. Chem. Phys. 15, 174 (1947).en_US
dc.identifier.citedreferenceG. Blasse, Philips Res. Rept. Suppl. 3, 1 (1964).en_US
dc.identifier.citedreferenceJ. Ferguson, D. L. Wood, and L. G. van Uitert, J. Chem. Phys. 51, 2904 (1969).en_US
dc.identifier.citedreferenceT. Sakurai, M. Ishigame, and H. Arashi, J. Chem. Phys. 50, 3241 (1969).en_US
dc.identifier.citedreferenceD. S. McClure, J. Phys. Chem. Solids 3, 311 (1957), and references therein.en_US
dc.identifier.citedreferenceE. Brun and S. S. Hafner, Z. Krist. 117, 63 (1962).en_US
dc.identifier.citedreferenceT. T. Taylor and T. P. Das, Phys. Rev. 133, A1327 (1964).en_US
dc.identifier.citedreferenceF. K. Lotgering, J. Phys. Chem. Solids 27, 139 (1966).en_US
dc.identifier.citedreferenceJ. Sawicki, Czech. J. Phys. 17, 371 (1967).en_US
dc.identifier.citedreferenceI. S. Lyubutin, E. F. Makarov, and V. A. Povitskii, “The Mössbauer Effect,” Symposium of the Faraday Society, p. 31, 1967.en_US
dc.identifier.citedreferenceB. J. Evans and S. S. Hafner, J. Phys. Chem. Solids 29, 1573 (1968).en_US
dc.identifier.citedreferenceB. J. Evans, Ph.D. thesis, University of Chicago, 1968.en_US
dc.identifier.citedreferenceW. C. Davidon, ANL Rept. ANL‐5990 (1959).en_US
dc.identifier.citedreferenceM. J. D. Powell, Computer J. 7, 303 (1964).en_US
dc.identifier.citedreferenceJ. R. Gabriel and S. L. Ruby, Nucl. Instr. Methods 36, 23 (1965).en_US
dc.identifier.citedreferenceS. S. Hafner and M. Raymond, J. Chem. Phys. 49, 3570 (1968) and references therein; E 50, 5430 (1969).en_US
dc.identifier.citedreferenceB. Boucher, R. Buhl, and M. Perrin, Phys. Status Solidi 40, 171 (1970).en_US
dc.identifier.citedreferenceM. Balanda, A. Szytula, Z. Dimitrijević, and J. Todorovic, Phys. Status Solidi 32, k91 (1969).en_US
dc.identifier.citedreferenceR. M. Sternheimer, Phys. Rev. 130, 1423 (1963).en_US
dc.identifier.citedreferenceP. K. Baltzer, P. J. Wojtowicz, M. Robbin, and E. Lopatin, Phys. Rev. 151, 367 (1966).en_US
dc.identifier.citedreferenceJ. R. Tessman, A. H. Kahn, and W. Shockley, Phys. Rev. 92, 890 (1953).en_US
dc.identifier.citedreferenceW. Kündig, M. Kobelt, H. Appel, G. Constabaris, and R. H. Lindquist, J. Phys. Chem. Solids 30, 819 (1969).en_US
dc.identifier.citedreferenceB. J. Evans, Mössbauer Effect Methodology, edited by I. J. Gruverman (Plenum, New York, 1968), Vol. 4, p. 139 and references therein.en_US
dc.identifier.citedreferenceY. Hazony and R. C. Axtmann, Bull. Am. Phys. Soc. 15, 656 (1970), and references therein.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.