Show simple item record

A two‐dimensional molecular dynamics simulation of thin film growth by oblique deposition

dc.contributor.authorDong, Liangen_US
dc.contributor.authorSmith, Richard W.en_US
dc.contributor.authorSrolovitz, David J.en_US
dc.date.accessioned2010-05-06T23:04:00Z
dc.date.available2010-05-06T23:04:00Z
dc.date.issued1996-11-15en_US
dc.identifier.citationDong, Liang; Smith, Richard W.; Srolovitz, David J. (1996). "A two‐dimensional molecular dynamics simulation of thin film growth by oblique deposition." Journal of Applied Physics 80(10): 5682-5690. <http://hdl.handle.net/2027.42/71012>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71012
dc.description.abstractAtomistic, molecular dynamics simulations are employed to investigate the relationship between film microstructure and deposition conditions (substrate temperature, deposition kinetic energy, and deposition angle). Increasing substrate temperature and deposition kinetic energy leads to fewer voids, smaller voids, smoother surfaces, and higher film density. As the deposition angle increases, the film microstructure changes from a dense film, with few voids, to a microstructure in which nearly colinear tracks of elongated voids form and, finally, to a highly porous structure of well‐formed columns. The angle along which the voids are elongated and the orientation of the void tracks are the same and increase monotonically with the deposition angle (the column angles follow the same trend as the deposition angle). Void formation, void alignment into tracks, and the columnar structure are all attributable to shadowing effects, which become more pronounced with increasing deposition angle. The variation of the column/void track angle β with deposition angle α fits well with the classical tangent law at low angles, but is overpredicted by the tangent law at α≳60°, consistent with experiment. The column angle β decreases slowly with increasing deposition kinetic energy due to increased surface mobility. © 1996 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent519245 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleA two‐dimensional molecular dynamics simulation of thin film growth by oblique depositionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109‐2136en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71012/2/JAPIAU-80-10-5682-1.pdf
dc.identifier.doi10.1063/1.363621en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceA. Movchan and A. V. Demchishin, Phys. Met. Metallogr. (U.S.S.R) 28, 83 (1969).en_US
dc.identifier.citedreferenceJ. M. Nieuwenhuizen and H. B. Haanstra, Philips Tech. Rev. 27, 87 (1966).en_US
dc.identifier.citedreferenceN. G. Nakhodkin and A. I. Shaldervan, Thin Solid Films 10, 109 (1972).en_US
dc.identifier.citedreferenceA. G. Dirks and H. J. Leamy, Thin Solid Films 47, 219 (1977).en_US
dc.identifier.citedreferenceD. K. Pandya, A. C. Rastogi, and K. L. Chopra, J. Appl. Phys. 46, 2966 (1975).en_US
dc.identifier.citedreferenceS. M. Paik, S. Kim, I. K. Schuller, and R. Ramirez, Phys. Rev. B 43, 1843 (1991).en_US
dc.identifier.citedreferenceR. N. Tait, T. Smy, and M. J. Brett, Thin Solid Films 226, 196 (1993).en_US
dc.identifier.citedreferenceK.-H. Müller, J. Appl. Phys. 58, 2573 (1985).en_US
dc.identifier.citedreferenceS. Müller-Pfeiffer, H. van Kranenburg, and J. C. Lodder, Thin Solid Films 213, 143 (1992).en_US
dc.identifier.citedreferenceP. Meakin and J. Krug, Phys. Rev. A 46, 3390 (1992).en_US
dc.identifier.citedreferenceP. Smilauer, M. R. Wilby, and D. D. Vvedensky, Phys. Rev. B 47, 4119 (1993).en_US
dc.identifier.citedreferenceP. Smilauer, M. R. Wilby, and D. D. Vvedensky, Phys. Rev. B 48, 4968 (1993).en_US
dc.identifier.citedreferenceR. W. Smith and D. J. Srolovitz, J. Appl. Phys. 79, 1448 (1996).en_US
dc.identifier.citedreferenceF. F. Abraham, in Melting, Localization, and Chaos (Elsevier, New York, 1982), p. 75.en_US
dc.identifier.citedreferenceS. Toxvaerd, J. Chem. Phys. 69, 4750 (1978).en_US
dc.identifier.citedreferenceW. W. Mullins, J. Appl. Phys. 30, 77 (1959).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.