Show simple item record

Beam breakup instability in an annular electron beam

dc.contributor.authorLau, Y. Y.en_US
dc.contributor.authorLuginsland, John W.en_US
dc.date.accessioned2010-05-06T23:08:16Z
dc.date.available2010-05-06T23:08:16Z
dc.date.issued1993-11-01en_US
dc.identifier.citationLau, Y. Y.; Luginsland, John W. (1993). "Beam breakup instability in an annular electron beam." Journal of Applied Physics 74(9): 5877-5879. <http://hdl.handle.net/2027.42/71057>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71057
dc.description.abstractIt is shown that an annular electron beam may carry six times as much current as a pencil beam for the same beam breakup (BBU) growth. This finding suggests that the rf magnetic field of the breakup mode is far more important than the rf electric field in the excitation of BBU. A proof‐of‐principle experiment is suggested, and the implications explored.en_US
dc.format.extent3102 bytes
dc.format.extent326946 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleBeam breakup instability in an annular electron beamen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumIntense Energy Beam Interaction Laboratory and Department of Nuclear Engineering, University of Michigan, Ann Arbor, Michigan 48109‐2104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71057/2/JAPIAU-74-9-5877-1.pdf
dc.identifier.doi10.1063/1.354161en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceV. Serlin and M. Friedman, Appl. Phys. Lett. 62, 2772 (1993); Y. Y. Lau, M. Friedman, J. Krall, and V. Serlin, IEEE Trans. PS-18, 553 (1990) and references therein; M. Friedman, Y. Y. Lau, J. Krall, and V. Serlin, U. S. Patent 5,132,638 (issued July 21, 1992); J. Krall, M. Friedman, Y. Y. Lau, and V. Serlin, IEEE Trans. EMC-34, 22 (1992).en_US
dc.identifier.citedreferenceC. Chen, P. Catraras, and G. Bekefi, Appl. Phys. Lett. 62, 1579 (1993); See also, “Intense Microwave and Particle Beams III,” Proc. Soc. Photo Opt. Instrum. Eng. SPIE 1629 (1992).en_US
dc.identifier.citedreferenceG. Voss and T. Weiland, “The wakefield acceleration mechanism,” Deutsches Electron-Synchrotron Internal Report DESY #M82–10 (1982); M82–079 (1982), Hamburg, Germany.en_US
dc.identifier.citedreferenceM. Friedman, J. Krall, Y. Y. Lau, and V. Serlin, Phys. Rev. Lett. 63, 2468 (1989).en_US
dc.identifier.citedreferenceW. K. H. Panofsky and M. Bander, Rev. Sci. Instrum. 39, 206 (1968); R. H. Helm and G. A. Loew, in Linear Accelerators, edited by R. P. Lapostolle and A. L. Septier (North-Holland, Amsterdam, 1970), p. 173.en_US
dc.identifier.citedreferenceV. K. Neil, L. S. Hall, and R. K. Cooper, Part. Accel. 1, 111 (1970); 9, 213 (1979).en_US
dc.identifier.citedreferenceA. W. Chao, B. Richter, and C. Y. Yao, Nucl. Instrum. Methods 178, 1 (1980); K. A. Thompson and R. D. Ruth, Phys. Rev. D 41, 964 (1990); R. L. Gluckstern, F. Neri, and R. K. Cooper, Part. Accel. 23, 37 (1988); C. L. Bohn and J. R. Delayen, Phys. Rev. A 45, 5964 (1992); D. Chernin and A. Mondeli, Part. Accel. 24, 685 (1985); G. Decker and J. M. Wang, Phys. Rev. D 38, 980 (1988); W. E. Martin, G. J. Caporaso, W. M. Fawley, D. Prosnitz, and A. G. Cole, Phys. Rev. Lett. 54, 685 (1985) D. Colombant, Y. Y. Lau, and D. Chernin, Part. Accel. 35, 193 (1991).en_US
dc.identifier.citedreferenceY. Y. Lau, Phys. Rev. Lett. 63, 1141 (1989).en_US
dc.identifier.citedreferenceThe rate of power transfer is proportional to the gradient of E1,E1, rather than E1E1 itself. This may be seen when one substitutes Eq. (3) into Eq. (4) and performs integration by parts.en_US
dc.identifier.citedreferenceP. R. Menge, R. M. Gilgenbach, and Y. Y. Lau, Phys. Rev. Lett. 69, 2372 (1992); P. R. Menge, R. M. Gilgenbach, and R. Bosch, Appl. Phys. Lett. 61, 642 (1992).en_US
dc.identifier.citedreferenceBBU growth on a pencil beam that is placed off-center can be easily calculated by using Eq. (4) instead of Eq. (5). We pretend that the total beam current is carried by theith filament that enters Eq. (4). Although the BBU growth of such an off-center beam depends on θiθi its coupling constant ϵ is still much less than ϵ0,ϵ0, the value for an on-axis beam.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.