Show simple item record

Fe and Cr doping of liquid‐phase epitaxial In0.53Ga0.47As/InP

dc.contributor.authorRao, Mulpuri V.en_US
dc.contributor.authorBhattacharya, Pallab K.en_US
dc.date.accessioned2010-05-06T23:10:31Z
dc.date.available2010-05-06T23:10:31Z
dc.date.issued1985-01-15en_US
dc.identifier.citationRao, Mulpuri V.; Bhattacharya, Pallab K. (1985). "Fe and Cr doping of liquid‐phase epitaxial In0.53Ga0.47As/InP." Journal of Applied Physics 57(2): 333-337. <http://hdl.handle.net/2027.42/71081>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71081
dc.description.abstractFe and Cr doping of liquid‐phase epitaxial In0.53Ga0.47As grown at 650 °C on InP substrates have been investigated. Varying amounts of high‐purity Fe and Cr have been added to the growth melt. The resistivity of Fe‐doped layers increases with increase of Fe added to the melt, and layers with ND−NA as low as 2.0×1012 cm−3 can be grown consistently. From analysis of temperature‐dependent Hall data on conducting Fe‐doped samples, the Fe acceptor ionization energy is found to be 0.46 eV. No additional feature is seen in the 4 K band‐edge photoluminescence spectra of Fe‐doped layers. Cr doping seems to produce donorlike behavior and the electron concentration increases monotonically with increased addition of Cr to the melt. An additional peak, separated from the band‐gap energy by 24 meV is seen in the photoluminescence spectra of Cr‐doped samples. It is believed that Cr itself, or a complex defect involving Cr is responsible for the formation of a donorlike center.en_US
dc.format.extent3102 bytes
dc.format.extent607319 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleFe and Cr doping of liquid‐phase epitaxial In0.53Ga0.47As/InPen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSolid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71081/2/JAPIAU-57-2-333-1.pdf
dc.identifier.doi10.1063/1.334810en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceJ. D. Oliver, Jr. and L. F. Eastman, J. Electron. Mater. 9, 693 (1980).en_US
dc.identifier.citedreferenceL. W. Cook, M. M. Tashima, N. Tabatabaie, T. S. Low, and G. E. Stillman, J. Cryst. Growth 56, 475 (1982).en_US
dc.identifier.citedreferenceT. Amano, K. Takahei, and H. Nagai, Jpn. J. Appl. Phys. 20, 2105 (1981).en_US
dc.identifier.citedreferenceE. Kuphal and A. Pocker, J. Cryst. Growth 58, 133 (1982).en_US
dc.identifier.citedreferenceP. K. Bhattacharya, M. V. Rao, and M. J. Tsai, J. Appl. Phys. 54, 5096 (1983).en_US
dc.identifier.citedreferenceT. P. Pearsall, G. Beuchet, J. P. Hirtz, N. Visentin, and M. Bonnet, Inst. Phys. Conf. Ser. 56, 639 (1981).en_US
dc.identifier.citedreferenceB. L. Mattes, Y. Houng, and G. L. Pearson, J. Vac. Sci. Technol. 12, 869 (1975).en_US
dc.identifier.citedreferenceM. Ostubo and H. Miki, J. Electrochem. Soc. 124, 441 (1977).en_US
dc.identifier.citedreferenceD. W. Woodard, P. D. Kirchner, W. J. Schaff, S. Tiwari, R. Stall, and L. F. Eastman, Inst. Phys. Conf. Ser. 56, 83 (1981).en_US
dc.identifier.citedreferenceK. Kojima and H. Hasegawa, Phys. Status Solidi A 62, 673 (1980).en_US
dc.identifier.citedreferenceP. A. Houston, J. Electron. Mater. 9, 79 (1980).en_US
dc.identifier.citedreferenceH. Brendecke, H. L. Stormer, and R. J. Nelson, Appl. Phys. Lett. 35, 772 (1979).en_US
dc.identifier.citedreferenceD. P. Mullin and H. H. Wieder, J. Vac. Sci. Technol. B 1, 782 (1983).en_US
dc.identifier.citedreferenceR. L. Messham, A. Majerfeld, and K. J. Bachmann, in Proceedings of the Second International Conference on Semi‐Insulating III‐V Materials, edited by S. Makram‐Ebeid and B. Tuck (Shiva, England, 1982), p. 75.en_US
dc.identifier.citedreferenceH. H. Wieder, J. L. Veteran, A. R. Clawson, and D. P. Mullin, Appl. Phys. Lett. 43, 287 (1983).en_US
dc.identifier.citedreferenceA. R. Clawson, D. P. Mullin, and D. J. Elder, J. Cryst. Growth 64, 90 (1983).en_US
dc.identifier.citedreferenceP. K. Bhattacharya and S. Srinivasa, J. Appl. Phys. 54, 5090 (1983).en_US
dc.identifier.citedreferenceJ. K. Rhee and P. K. Bhattacharya, J. Electron. Mater. 11, 979 (1982).en_US
dc.identifier.citedreferenceK. Kajiyama, Y. Mizushima, and S. Sakata, Appl. Phys. Lett. 23, 458 (1973).en_US
dc.identifier.citedreferenceD. V. Morgan and J. Frey, Electron. Lett. 14, 737 (1978).en_US
dc.identifier.citedreferenceJ. L. Veteran, D. P. Mullin, and D. I. Elder, Thin Solid Films 97, 187 (1982).en_US
dc.identifier.citedreferenceK. Nakajima, S. Yamazaki, T. Takanohashi, and K. Akita, J. Cryst. Growth 59, 572 (1982).en_US
dc.identifier.citedreferenceE. Andre and J. M. LeDuc, Mater. Res. Bull. 4, 149 (1969).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.