Show simple item record

Extended ensemble molecular dynamics method for constant strain rate uniaxial deformation of polymer systems

dc.contributor.authorYang, Liuen_US
dc.contributor.authorSrolovitz, David J.en_US
dc.contributor.authorYee, Albert F.en_US
dc.date.accessioned2010-05-06T23:22:07Z
dc.date.available2010-05-06T23:22:07Z
dc.date.issued1997-09-15en_US
dc.identifier.citationYang, Liu; Srolovitz, David J.; Yee, Albert F. (1997). "Extended ensemble molecular dynamics method for constant strain rate uniaxial deformation of polymer systems." The Journal of Chemical Physics 107(11): 4396-4407. <http://hdl.handle.net/2027.42/71203>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71203
dc.description.abstractWe describe a novel molecular dynamics (MD) method to simulate the uniaxial deformation of an amorphous polymer. This method is based on a rigorously defined statistical mechanics ensemble appropriate for describing an isothermal, displacement controlled, uniaxial stress mechanical test. The total number of particles is fixed and the normal stresses in the direction normal to the applied strain are constant, i.e., an NTLxσyyσzzNTLxσyyσzz ensemble. By using the Lagrangian of the extended system (i.e., including additional variables corresponding to the temperature and cross-sectional area fluctuations), we derive a set of equations of motion for the atomic coordinates and the additional variables appropriate to this ensemble. In order to avoid the short MD time step appropriate for the stiff covalent bonds along the polymer chains, we introduce bond length constraints. This is achieved using a variation of the commonly used SHAKE [J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comp. Phys. 23, 327 (1977)] algorithm. A numerical method for integrating the equations of motion with constraints via a modification of the velocity Verlet [W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, J. Chem. Phys. 76, 637 (1982)] algorithm is presented. We apply this new algorithm to the constant strain rate deformation of an amorphous polyethylene in a model containing several distinct polymer chains. To our knowledge, this is the first time that bond length constraints were applied to a macromolecular system together with an extended ensemble in which the simulation cell shape is allowed to fluctuate. © 1997 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent224614 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleExtended ensemble molecular dynamics method for constant strain rate uniaxial deformation of polymer systemsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71203/2/JCPSA6-107-11-4396-1.pdf
dc.identifier.doi10.1063/1.474781en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceA. S. Argon, P. H. Mott, and U. W. Suter, Phys. Status Solid B 172, 193 (1992).en_US
dc.identifier.citedreferenceP. H. Mott, A. S. Argon, and U. W. Suter, Philos. Mag. 67, 931 (1993).en_US
dc.identifier.citedreferenceM. Hutnik, A. S. Argon, and U. W. Suter, Macromolecules 26, 1097 (1993).en_US
dc.identifier.citedreferenceD. Brown and J. H. R. Clarke, Macromolecules 24, 2075 (1991).en_US
dc.identifier.citedreferenceJ. I. McKechnie, R. N. Haward, D. Brown, and J. H. R. Clarke, Macromolecules 26, 198 (1993).en_US
dc.identifier.citedreferenceJ. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comp. Phys. 23, 327 (1977).en_US
dc.identifier.citedreferenceJ. P. Ryckaert and G. Ciccotti, J. Chem. Phys. 78, 7368 (1983).en_US
dc.identifier.citedreferenceM. Ferrario and J. P. Ryckaert, Mol. Phys. 54, 587 (1985).en_US
dc.identifier.citedreferenceH. C. Andersen, J. Chem. Phys. 72, 2384 (1980).en_US
dc.identifier.citedreferenceM. Parrinello and A. Rahman, Phys. Rev. Lett. 45, 1196 (1980).en_US
dc.identifier.citedreferenceS. Nosé, Mol. Phys. 52, 255 (1984).en_US
dc.identifier.citedreferenceL. Verlet, Phys. Rev. 159, 98 (1967).en_US
dc.identifier.citedreferenceW. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, J. Chem. Phys. 76, 637 (1982).en_US
dc.identifier.citedreferenceJ. R. Fox and H. C. Andersen, J. Phys. Chem. 88, 4019 (1984).en_US
dc.identifier.citedreferenceH. C. Andersen, J. Comp. Phys. 52, 24 (1983).en_US
dc.identifier.citedreferenceB. J. Palmer, J. Comp. Phys. 104, 472 (1993).en_US
dc.identifier.citedreferenceJ. Q. Broughton and G. H. Gilmer, J. Comp. Phys. 79, 5095 (1983).en_US
dc.identifier.citedreferenceM. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987), Chap. 3.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.