Show simple item record

The role of Auger recombination in the temperature-dependent output characteristics (T0=∞)(T0=∞) of pp-doped 1.3 μm quantum dot lasers

dc.contributor.authorFathpour, S.en_US
dc.contributor.authorMi, Zetianen_US
dc.contributor.authorBhattacharya, Pallab K.en_US
dc.contributor.authorKovsh, A. R.en_US
dc.contributor.authorMikhrin, S. S.en_US
dc.contributor.authorKrestnikov, I. L.en_US
dc.contributor.authorKozhukhov, A. V.en_US
dc.contributor.authorLedentsov, N. N.en_US
dc.date.accessioned2010-05-06T23:28:00Z
dc.date.available2010-05-06T23:28:00Z
dc.date.issued2004-11-29en_US
dc.identifier.citationFathpour, S.; Mi, Z.; Bhattacharya, P.; Kovsh, A. R.; Mikhrin, S. S.; Krestnikov, I. L.; Kozhukhov, A. V.; Ledentsov, N. N. (2004). "The role of Auger recombination in the temperature-dependent output characteristics (T0=∞)(T0=∞) of pp-doped 1.3 μm quantum dot lasers." Applied Physics Letters 85(22): 5164-5166. <http://hdl.handle.net/2027.42/71264>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71264
dc.description.abstractTemperature invariant output slope efficiency and threshold current (T0=∞)(T0=∞) in the temperature range of 5–75 °C have been measured for 1.3 μm pp-doped self-organized quantum dot lasers. Similar undoped quantum dot lasers exhibit T0=69 KT0=69 K in the same temperature range. A self-consistent model has been employed to calculate the various radiative and nonradiative current components in pp-doped and undoped lasers and to analyze the measured data. It is observed that Auger recombination in the dots plays an important role in determining the threshold current of the pp-doped lasers.en_US
dc.format.extent3102 bytes
dc.format.extent218628 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleThe role of Auger recombination in the temperature-dependent output characteristics (T0=∞)(T0=∞) of pp-doped 1.3 μm quantum dot lasersen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSolid-State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122en_US
dc.contributor.affiliationotherNL-Nanosemiconductors GmbH, Joseph-von-Fraunhofer-Strasse 13, 44227 Dortmund, Germanyen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71264/2/APPLAB-85-22-5164-1.pdf
dc.identifier.doi10.1063/1.1829158en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceO. B. Schekin and D. G. Deppe, IEEE Photonics Technol. Lett. 9, 1231 (2002).en_US
dc.identifier.citedreferenceO. B. Schekin and D. G. Deppe, Appl. Phys. Lett. 80, 3277 (2002).en_US
dc.identifier.citedreferenceP. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, Z. Wu, J. Urayama, K. Kim, and T. B. Norris, IEEE J. Quantum Electron. 39, 952 (2003).en_US
dc.identifier.citedreferenceS. Fathpour, Z. Mi, S. Chakrabarti, P. Bhattacharya, A.R. Kovsh, S.S. Mikhrin, I.L. Krestnikov, A.V. Kozhukhov, and N.N. Ledentsov, 62nd Device Research Conference Digest (IEEE, New York, 2004), pp. 156–157.en_US
dc.identifier.citedreferenceY. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, IEEE J. Quantum Electron. 25, 2001 (1989).en_US
dc.identifier.citedreferenceD. G. Deppe, H. Huang, and O. B. Shchekin, IEEE J. Quantum Electron. 38, 1587 (2002).en_US
dc.identifier.citedreferenceA. A. Dikshit and J. M. Pikal, IEEE J. Quantum Electron. 40, 105 (2004).en_US
dc.identifier.citedreferenceS. Krishna, J. Sabarinathan, K. Linder, P. Bhattacharya, B. Lita, and R. S. Goldman, J. Vac. Sci. Technol. B 18, 1502 (2000).en_US
dc.identifier.citedreferenceK. Nishi, H. Saito, S. Sugou, and J. Lee, Appl. Phys. Lett. 74, 1111 (1999).en_US
dc.identifier.citedreferenceI. P. Marko, A. D. Andreev, A. R. Adams, R. Krebs, J. P. Reithmaier, and A. Forchel, IEEE J. Sel. Top. Quantum Electron. 9, 1300 (2003).en_US
dc.identifier.citedreferenceS. Ghosh, P. Bhattacharya, E. Stones, J. Singh, H. Jiang, S. Nuttinck, and J. Laskar, Appl. Phys. Lett. 79, 722 (2001).en_US
dc.identifier.citedreferenceP. Bhattacharya, K. K. Kamath, J. Singh, D. Klotzkin, J. Phillips, H. Jiang, N. Chervela, T. B. Norris, T. Sonowski, J. Laskar, and M. R. Murty, IEEE Trans. Electron Devices 46, 871 (1999).en_US
dc.identifier.citedreferenceT. S. Sosnowski, T. B. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, Phys. Rev. B 57, R9423 (1998).en_US
dc.identifier.citedreferenceM. Brasken, M. Lindberg, M. Soupanen, H. Lipsanen, and J. Tulkki, Phys. Rev. B 58, R15993 (1998).en_US
dc.identifier.citedreferenceS. Krishna, P. Bhattacharya, J. Singh, T. Norris, J. Urayama, P. J. McCann, and K. Namjou, IEEE J. Quantum Electron. 37, 1066 (2001).en_US
dc.identifier.citedreferenceL. V. Asryan and R. A. Suris, IEEE J. Quantum Electron. 34, 841 (1998).en_US
dc.identifier.citedreferenceD. R. Matthews, H. D. Summers, P. M. Smowton, and M. Hopkinson, Appl. Phys. Lett. 81, 4904 (2002).en_US
dc.identifier.citedreferenceM. Grundmann and B. Bimberg, Phys. Rev. B 55, 9740 (1997).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.