Show simple item record

Raman effect in AlGaAs waveguides for subpicosecond pulses

dc.contributor.authorKao, Y. ‐H.en_US
dc.contributor.authorIslam, M. N.en_US
dc.contributor.authorSaylor, J. M.en_US
dc.contributor.authorSlusher, R. E.en_US
dc.contributor.authorHobson, W. S.en_US
dc.date.accessioned2010-05-06T23:28:06Z
dc.date.available2010-05-06T23:28:06Z
dc.date.issued1995-08-15en_US
dc.identifier.citationKao, Y.‐H.; Islam, M. N.; Saylor, J. M.; Slusher, R. E.; Hobson, W. S. (1995). "Raman effect in AlGaAs waveguides for subpicosecond pulses." Journal of Applied Physics 78(4): 2198-2203. <http://hdl.handle.net/2027.42/71265>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71265
dc.description.abstractThe Raman effect in semiconductor waveguides below half‐gap is studied both experimentally and numerically. We report the depolarized Raman gain spectra up to 300 cm−1 in Al0.24Ga0.76As at pump wavelengths of 0.515 and 1.55 μm from the measurement of the absolute Raman scattering cross sections using GaAs as a reference scatterer. In addition, the coupled propagation equations for the AlGaAs waveguides are modified to include the Raman effect. By solving the coupled propagation equations numerically, we verify that the energy transfer between two orthogonally polarized pulses demonstrated in previous pump‐probe experiments [M. N. Islam et al., J. Appl. Phys. 71, 1927 (1992)] is caused by Raman effect. We also show numerically that the Raman effect induces spectral distortions on the pulses, and the energy transfer is inversely proportional to the pulse widths. The energy transfer results in a severe cross‐talk problem for sub‐picosecond pulses in AlGaAs waveguides. For example, the energy exchange is about 30% for 300 fs pulses under π phase shift conditions. Therefore, the Raman effect limits the performance of semiconductor waveguides in optical switching applications for sub‐picosecond pulses. © 1995 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent697184 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleRaman effect in AlGaAs waveguides for subpicosecond pulsesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumThe University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherAT&T Bell Laboratories, Murray Hill, New Jersey 07974en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71265/2/JAPIAU-78-4-2198-1.pdf
dc.identifier.doi10.1063/1.360135en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceM. N. Islam, C. E. Soccolich, R. B. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, J. Appl. Phys. 71, 1927 (1992).en_US
dc.identifier.citedreferenceS. T. Ho, C. B. Soccolich, M. N. Islam, W. S. Hobson, A. F. J. Levi, and R. E. Slusher, Appl. Phys. Lett. 59, 2558 (1991).en_US
dc.identifier.citedreferenceC. C. Yang, A. Villeneuve, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, IEEE J. Quantum Electron. QE-29, 2934 (1993).en_US
dc.identifier.citedreferenceK. Al-hemyari, C. N. Ironside, and J. S. Aitchison, IEEE J. Quantum Electron. QE-28, 10 (1992).en_US
dc.identifier.citedreferenceA. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, Appl. Phys. Lett. 61, 147 (1992).en_US
dc.identifier.citedreferenceC. C. Yang, A. Villeneuve, G. I. Stegeman, and J. S. Aitchison, Opt. Lett. 17, 710 (1992).en_US
dc.identifier.citedreferenceJ. P. Gordon, Opt. Lett. 11, 662 (1986).en_US
dc.identifier.citedreferenceM. H. Grimsditch, D. Olego, and M. Cardona, Phys. Rev. B 20, 1758 (1979).en_US
dc.identifier.citedreferenceM. Cardona, M. H. Grimsditch, and D. Olego, in Light Scattering in Solids, edited by J. L. Birman, H. Z. Cummins, and K. K. Rebane (Plenum, New York, 1979).en_US
dc.identifier.citedreferenceSaint-Cricq, R. Carles, J. B. Renucci, A. Zwick, and M. A. Renucci, Solid State Commun. 39, 1137 (1981).en_US
dc.identifier.citedreferenceM. Cardona, in Light Scattering in Solids, edited by M. Cardona (Springer, Berlin, 1975).en_US
dc.identifier.citedreferenceR. H. Stolen and E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).en_US
dc.identifier.citedreferenceR. H. Stolen, Phys. Chem. Glasses 11, 83 (1970); R. W. Hellwarth, J. Cherlow, and T.-T. Yang, Phys. Rev. B 11, 964 (1975); D. M. Krol and J. G. Van Lierop, J. Non-Cryst. Solids 63, 131 (1984).en_US
dc.identifier.citedreferenceY. R. Shen, The Principle of Nonlinear Optics (Wiley, New York, 1984).en_US
dc.identifier.citedreferenceC. R. Menyuk, Opt. Lett. 16, 566 (1991).en_US
dc.identifier.citedreferenceC. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174 (1987); 25, 2674 (1989).en_US
dc.identifier.citedreferenceM. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, IEEE J. Quantum Electron. QK-30, 256 (1994).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.