Show simple item record

An experimental study of deep water plunging breakers

dc.contributor.authorPerlin, Marcen_US
dc.contributor.authorHe, Jianhuien_US
dc.contributor.authorBernal, Luis P.en_US
dc.date.accessioned2010-05-06T23:31:16Z
dc.date.available2010-05-06T23:31:16Z
dc.date.issued1996-09en_US
dc.identifier.citationPerlin, Marc; He, Jianhui; Bernal, Luis P. (1996). "An experimental study of deep water plunging breakers." Physics of Fluids 8(9): 2365-2374. <http://hdl.handle.net/2027.42/71298>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71298
dc.description.abstractPlunging breaking waves are generated mechanically on the surface of essentially deep water in a two‐dimensional wave tank by superposition of progressive waves with slowly decreasing frequency. The time evolution of the transient wave and the flow properties are measured using several experimental techniques, including nonintrusive surface elevation measurement, particle image velocimetry, and particle tracking velocimetry. The wave generation technique is such that the wave steepness is approximately constant across the amplitude spectrum. Major results include the appearance of a discontinuity in slope at the intersection of the lower surface of the plunging jet and the forward face of the wave that generates parasitic capillary waves; transverse irregularities occur along the upper surface of the falling, plunging jet while the leeward side of the wave remains very smooth and two dimensional; the velocity field is shown to decay rapidly with depth, even in this strongly nonlinear regime, and is similar to that expected from linear theory—the fluid is undisturbed for depths greater than one‐half the wavelength; a focusing or convergence of particle velocities are shown to create the jet in the wave crest; vorticity levels determined from the measured, full‐field velocity vectors show that the waves are essentially irrotational until incipient breaking occurs; and the magnitude of the largest water particle velocity is about 30% greater than the phase speed of the (equivalent) linear wave. © 1996 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent475154 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleAn experimental study of deep water plunging breakersen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, Michigan 48109‐2145en_US
dc.contributor.affiliationumDepartment of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109‐2118en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71298/2/PHFLE6-8-9-2365-1.pdf
dc.identifier.doi10.1063/1.869021en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceM. S. Longuet-Higgins and E. D. Cokelet, “The deformation of steep surface waves on water. I. A numerical method of computation,” Proc. R. Soc. London Ser. A 358, 1 (1976).en_US
dc.identifier.citedreferenceM. S. Longuet-Higgins and E. D. Cokelet, “The deformation of steep surface waves on water. II. Growth of normal mode instabilities,” Proc. R. Soc. London Ser. A 364, 1 (1978).en_US
dc.identifier.citedreferenceT. Vinje and P. Brevig, “Numerical simulation of breaking waves,” Adv. Water Res. 4, 77 (1981).en_US
dc.identifier.citedreferenceM. Tanaka, “The stability of steep gravity waves,” J. Phys. Soc. Jpn. 52, 3047 (1983).en_US
dc.identifier.citedreferenceM. Tanaka, “The stability of steep gravity waves. II,” J. Fluid Mech. 156, 281 (1985).en_US
dc.identifier.citedreferenceW. J. Jillians, “The superharmonic instability of Stokes waves in deep water,” J. Fluid Mech. 204, 563 (1989).en_US
dc.identifier.citedreferenceD. G. Dommermuth, D. K.-P. Yue, W. M. Lin, R. J. Rapp, E. S. Chan, and W. K. Melville, “Deep-water plunging breakers: A comparison between potential theory and experiments,” J. Fluid Mech. 189, 423 (1988).en_US
dc.identifier.citedreferenceD. J. Skyner, C. Gray, and C. A. Greated, “A comparison of time-stepping numerical predictions with whole-field flow measurement in breaking waves,” Water Wave Kinematics, edited by A. Tørum and O. T. Gudmestad, 1990, p. 491.en_US
dc.identifier.citedreferenceD. J. Skyner and C. A. Greated, “The evolution of a long-crested deepwater breaking wave,” 2nd Int. Off. Polar Eng. Conf. 111, 132 (1992).en_US
dc.identifier.citedreferenceJ. W. Dold and D. H. Peregrine, “Water-wave modulation,” Proc. 20th Int. Conf. Coastal Eng. 1, 163 (1986).en_US
dc.identifier.citedreferenceM. P. Tulin and J. J. Li, “On the breaking of energetic waves,” Int. J. Off. Polar Eng. 2, 46 (1992).en_US
dc.identifier.citedreferenceA. D. Jenkins, “A stationary potential-flow approximation for a breakingwave crest,” J. Fluid Mech. 280, 335 (1994).en_US
dc.identifier.citedreferenceJ. W. McLean, “Instabilities of finite-amplitude water waves,” J. Fluid Mech. 114, 315 (1982).en_US
dc.identifier.citedreferenceM. L. Banner and D. H. Peregrine, “Wave breaking in deep water,” Annu. Rev. Fluid Mech. 25, 373 (1993).en_US
dc.identifier.citedreferenceW. K. Melville, “The instability and breaking of deep-water waves,” J. Fluid Mech. 115, 165 (1982).en_US
dc.identifier.citedreferenceW. K. Melville, “Wave modulation and breakdown,” J. Fluid Mech. 128, 489 (1983).en_US
dc.identifier.citedreferenceM. Koga, “Characteristics of a breaking wind-wave field in the light of the individual wind-wave concept,” J. Ocean Soc. Jpn. 40, 105 (1984).en_US
dc.identifier.citedreferenceD. Xu, P. A. Hwang, and J. Wu, “Breaking of wind-generated waves,” J. Phys. Ocean. 16, 2172 (1986).en_US
dc.identifier.citedreferenceN. Ebuchi, H. Kawamura, and Y. Toba, “Fine structure of laboratory wind-wave surfaces studied using an optical method,” Boundary Layer Meteorol. 39, 133 (1987).en_US
dc.identifier.citedreferenceW. K. Melville and R. J. Rapp, “The surface velocity field in steep and breaking waves,” J. Fluid Mech. 189, 1 (1988).en_US
dc.identifier.citedreferenceS. P. Kjeldsen and D. Myrhaug, “Kinematics and dynamics of breaking waves,” Ships in Rough Seas, Part 4 (1978).en_US
dc.identifier.citedreferenceP. Bonmarin and A. Ramamonjiarsoa, “Deformation to breaking of deep water gravity waves,” Exp. Fluids 3, 11 (1985).en_US
dc.identifier.citedreferenceP. Bonmarin, “Geometric properties of deep-water breaking waves,” J. Fluid Mech. 209, 405 (1989).en_US
dc.identifier.citedreferenceR. J. Rapp and W. K. Melville, “Laboratory measurements of deep-water breaking waves,” Philos. Trans. R. Soc. London Ser. A 331, 735 (1990).en_US
dc.identifier.citedreferenceD. Skyner, “A comparison of numerical predictions and experimental measurements of the internal kinematics of a deep-water plunging wave,” J. Fluid Mech. (in press).en_US
dc.identifier.citedreferenceW. W. Schultz, J. Huh, and O. M. Griffin, “Potential energy in steep and breaking waves,” J. Fluid Mech. 278, 201 (1994).en_US
dc.identifier.citedreferenceM. C. Davis and E. E. Zarnick, “Testing ship models in transient waves,” Fifth Symposium on Naval Hydrodynamics, 1964, p. 507.en_US
dc.identifier.citedreferenceM. S. Longuet-Higgins, “On the disintegration of the jet in a plunging breaker,” J. Phys. Ocean. 25, 2458 (1995).en_US
dc.identifier.citedreferenceM. Perlin, H. J. Lin, and C. L. Ting, “On parasitic capillary waves generated by steep gravity waves: An experimental investigation with spatial and temporal measurements,” J. Fluid Mech. 255, 597 (1993).en_US
dc.identifier.citedreferenceS. Aissi and L. P. Bernal, “PIV investigation of an aperiodic forced mixing layer,” AIAA Paper No. 93–3241, 1993.en_US
dc.identifier.citedreferenceD. H. Shack, L. P. Bernal, and G. S. Shih, “Experimental investigation of underhood flow in a simplified automobile geometry,” Proceedings of the ASME Fluids Engineering Division Summer Conference, 1994.en_US
dc.identifier.citedreferenceR. J. Adrian, “Image shifting technique to resolve directional ambiguity in double-pulsed velocimetry,” Appl. Opt. 25, 3855 (1986).en_US
dc.identifier.citedreferenceL. P. Bernal and J. T. Kwon, “Surface flow velocity field measurement by laser speckle photography,” Proceedings of the 4th Intern Symposium on Application of Laser Anemometry to Fluid Mechanics, Lisbon, 1988.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.