Show simple item record

Tunnel injection In0.4Ga0.6As/GaAsIn0.4Ga0.6As/GaAs quantum dot lasers with 15 GHz modulation bandwidth at room temperature

dc.contributor.authorBhattacharya, Pallab K.en_US
dc.contributor.authorGhosh, S.en_US
dc.date.accessioned2010-05-06T23:33:26Z
dc.date.available2010-05-06T23:33:26Z
dc.date.issued2002-05-13en_US
dc.identifier.citationBhattacharya, P.; Ghosh, S. (2002). "Tunnel injection In0.4Ga0.6As/GaAsIn0.4Ga0.6As/GaAs quantum dot lasers with 15 GHz modulation bandwidth at room temperature." Applied Physics Letters 80(19): 3482-3484. <http://hdl.handle.net/2027.42/71321>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71321
dc.description.abstractBy utilizing tunnel injection of electrons, first demonstrated in quantum well lasers, we have measured enhanced small-signal modulation bandwidth, f−3dB,f−3dB, and reduced temperature sensitivity of the threshold current, characterized by T0,T0, in In0.4Ga0.6As/GaAsIn0.4Ga0.6As/GaAs self-organized quantum dot ridge waveguide lasers. Values of f−3dB = 15 GHzf−3dB=15GHz at 283 K and T0 = 237 KT0=237K for 318 ≥ T ≥ 278318⩾T⩾278 are measured in these devices. The differential gain at 283 K is dg/dn ≅ 8.5×10−14 cm2dg/dn≅8.5×10−14cm2 and the gain compression factor ϵ = 4.5×10−17 cm3.ϵ=4.5×10−17cm3. © 2002 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent175574 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleTunnel injection In0.4Ga0.6As/GaAsIn0.4Ga0.6As/GaAs quantum dot lasers with 15 GHz modulation bandwidth at room temperatureen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSolid State Electronics Laboratory Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor, Michigan 48109-2122en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71321/2/APPLAB-80-19-3482-1.pdf
dc.identifier.doi10.1063/1.1478129en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceG. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, Electron. Lett. ELLEAK35, 1163 (1999).en_US
dc.identifier.citedreferenceP. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, Electron. Lett. ELLEAK36, 1544 (2000).en_US
dc.identifier.citedreferenceR. L. Sellin, Ch. Ribbat, M. Grundmann, N. N. Ledenstov, and D. Bimberg, Appl. Phys. Lett. APPLAB78, 1207 (2001).en_US
dc.identifier.citedreferenceN. Kirstaedter, O. Schmidt, N. Ledenstov, D. Bimberg, V. Ustinov, A. Egorov, A. Zhukov, M. Maximov, P. Kop’ev, and Zh. I. Alferov, Appl. Phys. Lett. APPLAB69, 1226 (1996).en_US
dc.identifier.citedreferenceP. Bhattacharya, K. K. Kamath, J. Singh, D. Klotzkin, J. Phillips, H-T. Jiang, N. Chervela, T. Norris, T. Sosnowski, J. Laskar, and M. R. Murty, IEEE Trans. Electron Devices IETDAI46, 871 (1999).en_US
dc.identifier.citedreferenceD. Klotzkin, K. Kamath, K. Vineberg, P. Bhattacharya, R. Murty, J. Laskar, IEEE Photonics Technol. Lett. IPTLEL10, 932 (1998).en_US
dc.identifier.citedreferenceR. Krebs, F. Klopf, S. Rennon, J. P. Reithmaier, and A. Forchel, Electron. Lett. ELLEAK37, 1223 (2001).en_US
dc.identifier.citedreferenceD. Klotzkin, K. Kamath, and P. Bhattacharya, IEEE Photonics Technol. Lett. IPTLEL9, 1301 (1997).en_US
dc.identifier.citedreferenceR. Heitz, M. Veit, N. N. Ledenstov, A. Hoffman, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, Phys. Rev. B PRBMDO56, 10435 (1997).en_US
dc.identifier.citedreferenceD. G. Deppe and D. L. Huffaker, Appl. Phys. Lett. APPLAB77, 3325 (2000).en_US
dc.identifier.citedreferenceS. Krishna, P. Bhattacharya, J. Urayama, J. Singh, T. Norris, P. J. McCann, and K. Namjou, IEEE J. Quantum Electron. IEJQA737, 1066 (2001).en_US
dc.identifier.citedreferenceL. Davis, Y. L. Lam, Y. C. Chen, J. Singh, and P. Bhattacharya, IEEE J. Quantum Electron. IEJQA730, 2560 (1994).en_US
dc.identifier.citedreferenceP. Bhattacharya, J. Singh, H. Yoon, X. Zhang, A. Gutierrez-Aitken, and Y. Lam, IEEE J. Quantum Electron. IEJQA732, 1620 (1996).en_US
dc.identifier.citedreferenceH. Yoon, A. Gutierrez-Aitken, R. Jambunathan, J. Singh, and P. Bhattacharya, IEEE Photonics Technol. Lett. IPTLEL7, 974 (1992).en_US
dc.identifier.citedreferenceH. Yoon, H. C. Sun, and P. Bhattacharya, Electron. Lett. ELLEAK30, 1675 (1994).en_US
dc.identifier.citedreferenceL. Asryan and S. Luryi, IEEE J. Quantum Electron. IEJQA737, 905 (2001).en_US
dc.identifier.citedreferenceG. Walter, N. Holonyak, Jr., J. H. Ryou, R. D. Dupuis, Appl. Phys. Lett. APPLAB79, 1956 (2001).en_US
dc.identifier.citedreferenceS. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, Appl. Phys. Lett. APPLAB72, 3335 (1998).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.