Show simple item record

Empirical potentials for rovibrational energy transfer of hydrogen fluoride in collisions with argon

dc.contributor.authorShroll, Robert M.en_US
dc.contributor.authorLohr, Lawrence L. Jr.en_US
dc.contributor.authorBarker, John R.en_US
dc.date.accessioned2010-05-06T23:35:37Z
dc.date.available2010-05-06T23:35:37Z
dc.date.issued2001-09-08en_US
dc.identifier.citationShroll, Robert M.; Lohr, Lawrence L.; Barker, John R. (2001). "Empirical potentials for rovibrational energy transfer of hydrogen fluoride in collisions with argon." The Journal of Chemical Physics 115(10): 4573-4585. <http://hdl.handle.net/2027.42/71344>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71344
dc.description.abstractRovibrational energy transfer of hydrogen fluoride in collisions with argon was investigated by using the coupled-states approximation to the quantum scattering problem. Empirically determined 3-D ab initio potential energy surfaces (PES) for the interaction between hydrogen fluoride and argon are presented. Second-order Møller-Plesset perturbation theory (MP2) was used to provide an initial approximate PES for the complex. The MP2 PES was subsequently modified to compensate for the underestimated dispersion interaction and adjusted until the desired agreement between calculated and observed spectroscopic quantities was achieved. Calculated rotational cross sections are in good agreement with experimental results as well as those obtained with a highly accurate vibrationally averaged empirical PES [J. M. Hutson, J. Chem. Phys. 96, 6752 (1992)]. The rate constants for the collision induced relaxation of the first vibrational state of hydrogen fluoride are presented as functions of temperature. The rate constants show structure at low temperature corresponding to cross-section resonances. The calculated rate constants are in good agreement with available high temperature experimental results. The calculations provide lower temperature rate constants and a wealth of detailed state-to-state information that are not available from experiment. © 2001 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent188109 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEmpirical potentials for rovibrational energy transfer of hydrogen fluoride in collisions with argonen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumAtmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143en_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055en_US
dc.contributor.affiliationumDepartment of Chemistry and Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71344/2/JCPSA6-115-10-4573-1.pdf
dc.identifier.doi10.1063/1.1388547en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceM. G. Mlynczak, J. Geophys. Res., [Space Phys.] JGREA296, 17217 (1991).en_US
dc.identifier.citedreferenceM. G. Mlynczak and S. Solomon, Geophys. Res. Lett. GPRLAJ18, 37 (1991).en_US
dc.identifier.citedreferenceM. G. Mlynczak and S. Solomon, Geophys. Res. Lett. GPRLAJ18, 1201 (1991).en_US
dc.identifier.citedreferenceM. G. Mlynczak and S. Solomon, J. Geophys. Res., [Space Phys.] JGREA298, 10517 (1993).en_US
dc.identifier.citedreferenceM. G. Mlynczak, D. K. Zhou, and S. Adler-Golden, Geophys. Res. Lett. GPRLAJ25, 647 (1998).en_US
dc.identifier.citedreferenceS. Solomon, J. T. Kiehl, B. J. Kerridge, E. E. Remsberg, and J. M. Russell III, J. Geophys. Res., [Space Phys.] JGREA291, 9865 (1986).en_US
dc.identifier.citedreferenceJ. A. Kaye, Appl. Opt. APOPAI28, 4161 (1989).en_US
dc.identifier.citedreferenceS. R. Leone, J. Phys. Chem. Ref. Data JPCRBU11, 953 (1982).en_US
dc.identifier.citedreferenceJ. R. Airey and S. F. Fried, Chem. Phys. Lett. CHPLBC8, 23 (1971).en_US
dc.identifier.citedreferenceJ. F. Bott and N. Cohen, J. Chem. Phys. JCPSA655, 3698 (1971).en_US
dc.identifier.citedreferenceJ. K. Hancock and W. H. Green, J. Chem. Phys. JCPSA656, 2474 (1972).en_US
dc.identifier.citedreferenceW. H. Green and J. K. Hancock, IEEE J. Quantum Electron. IEJQA7QE-9, 50 (1973).en_US
dc.identifier.citedreferenceS. S. Fried, J. Wilson, and R. L. Taylor, IEEE J. Quantum Electron. IEJQA7QE-9, 59 (1973).en_US
dc.identifier.citedreferenceJ. J. Hinchen, J. Chem. Phys. JCPSA659, 233 (1973).en_US
dc.identifier.citedreferenceL. S. Blair, W. D. Breshears, and G. L. Schott, J. Chem. Phys. JCPSA659, 1582 (1973).en_US
dc.identifier.citedreferenceJ. K. Hancock and W. H. Green, J. Chem. Phys. JCPSA657, 4515 (1972).en_US
dc.identifier.citedreferenceG. K. Vasil’ev, E. F. Makarov, V. G. Papin, and V. L. Talrose, Teor. Mat. Fiz. TMFZAL64, 2046 (1973).en_US
dc.identifier.citedreferenceD. L. Thompson, J. Chem. Phys. JCPSA676, 5947 (1982).en_US
dc.identifier.citedreferenceD. L. Thompson, Chem. Phys. Lett. CHPLBC84, 397 (1981).en_US
dc.identifier.citedreferenceG. C. Berend and R. L. Thommarson, J. Chem. Phys. JCPSA658, 3454 (1973).en_US
dc.identifier.citedreferenceD. L. Thompson, J. Chem. Phys. JCPSA678, 1763 (1983).en_US
dc.identifier.citedreferenceM. Y. Ovchinnikova, Chem. Phys. CMPHC293, 101 (1985).en_US
dc.identifier.citedreferenceR. V. Krems, N. Marković, A. A. Buchanchenko, and S. Nordholm, J. Chem. Phys. JCPSA6114, 1249 (2001).en_US
dc.identifier.citedreferenceT. F. Ewing, J. Detrich, and R. W. Conn, J. Chem. Phys. JCPSA669, 4662 (1978).en_US
dc.identifier.citedreferenceA. A. Buchachenko, N. F. Stepanov, B. L. Grigorenko, and A. V. Nemukhin, J. Chem. Phys. JCPSA6111, 2470 (1999).en_US
dc.identifier.citedreferenceB. L. Grigorenko, A. V. Nemukhin, and V. A. Apkarian, J. Chem. Phys. JCPSA6104, 5510 (1996).en_US
dc.identifier.citedreferenceA. A. Buchachenko, N. F. Stepanov, B. L. Grigorenko, and A. V. Nemukhin, J. Chem. Phys. JCPSA6111, 2470 (1999).en_US
dc.identifier.citedreferenceD. J. Kouri, “Rotational excitation II: Approximation methods,” in Atom-Molecule Collision Theory: A Guide for the Experimentalist, editors R. B. Bernstein (Plenum, New York, 1979), p. 301.en_US
dc.identifier.citedreferenceG. Chalasiński and M. Szczȩśniak, Chem. Rev. CHREAY7, 1723 (1994).en_US
dc.identifier.citedreferenceW. J. Meath and M. Koulis, J. Mol. Struct.: THEOCHEM THEODJ72, 1 (1991).en_US
dc.identifier.citedreferenceR. J. LeRoy, C. Bissonnette, T. H. Wu, A. K. Dham, and W. J. Meath, Faraday Discuss. FDISE697, 81 (1994).en_US
dc.identifier.citedreferenceM. Meuwly and J. M. Hutson, J. Chem. Phys. JCPSA6110, 8338 (1999).en_US
dc.identifier.citedreferenceW. R. Rodwell, L. T. Sin Fai Lam, and R. O. Watts, Mol. Phys. MOPHAM44, 225 (1981).en_US
dc.identifier.citedreferenceM. Jeziorska, P. Jankowski, K. Szalewicz, and B. Jeziorski, J. Chem. Phys. JCPSA6113, 2957 (2000).en_US
dc.identifier.citedreferenceR. J. Le Roy and J. M. Hutson, J. Chem. Phys. JCPSA686, 837 (1986).en_US
dc.identifier.citedreferenceAdvances in Chemical Physics: Intermolecular Forces, edited by J. O. Hirschelder (John Wiley & Sons, New York, 1967), Vol. 12.en_US
dc.identifier.citedreferenceR. Ahlrichs, R. Penco, and G. Scoles, Chem. Phys. CMPHC219, 119 (1977).en_US
dc.identifier.citedreferenceA. D. Esposti and H.-J. Werner, J. Chem. Phys. JCPSA693, 3351 (1990).en_US
dc.identifier.citedreferenceM. Yang and M. H. Alexander, J. Chem. Phys. JCPSA6103, 6973 (1995).en_US
dc.identifier.citedreferenceM. H. Alexander, J. Chem. Phys. JCPSA6111, 7426 (1999).en_US
dc.identifier.citedreferenceM. H. Alexander, S. Gregurick, P. J. Dagdigian, G. W. Lemire, M. J. McQuaid, and R. C. Sausa, J. Chem. Phys. JCPSA6101, 4547 (1994).en_US
dc.identifier.citedreferenceH.-J. Werner, B. Follmeg, and M. H. Alexander, J. Chem. Phys. JCPSA689, 3139 (1988).en_US
dc.identifier.citedreferenceR. A. Kendall, G. Chałasiński, J. Klos, R. Bukowshi, M. W. Severson, M. M. Szczȩśniak, and S. M. Cybulski, J. Chem. Phys. JCPSA6108, 3235 (1998).en_US
dc.identifier.citedreferenceJ. M. Hutson and B. J. Howard, Mol. Phys. MOPHAM45, 791 (1982).en_US
dc.identifier.citedreferenceJ. M. Hutson, J. Chem. Phys. JCPSA696, 6752 (1992).en_US
dc.identifier.citedreferenceW. Kołos, G. Corongiu, and E. Clementi, Int. J. Quantum Chem. IJQCB217, 775 (1980).en_US
dc.identifier.citedreferenceF.-M. Tao and W. Klemperer, J. Chem. Phys. JCPSA6101, 1129 (1994).en_US
dc.identifier.citedreferenceT. van Mourik and T. H. Dunning, Jr., J. Chem. Phys. JCPSA6107, 2451 (1997).en_US
dc.identifier.citedreferenceV. F. Lotrich, H. L. Williams, K. Szalewicz, B. Jeziorski, R. Moszynski, P. E. S. Wormer, and Ad vav der Avoird, J. Chem. Phys. JCPSA6103, 6076 (1995).en_US
dc.identifier.citedreferenceD. J. Nesbitt, M. S. Child, and D. C. Clary, J. Chem. Phys. JCPSA690, 4855 (1989).en_US
dc.identifier.citedreferenceC. Douketis, J. M. Hutson, B. J. Orr, and G. Scoles, Mol. Phys. MOPHAM52, 763 (1984).en_US
dc.identifier.citedreferenceA. K. Rappé and E. R. Bernstein, J. Phys. Chem. JPCHAX104, 6117 (2000).en_US
dc.identifier.citedreferenceM. H. Alexander and P. McGuire, J. Chem. Phys. JCPSA664, 452 (1976).en_US
dc.identifier.citedreferenceC. Douketis, G. Scoles, S. Marchetti, M. Zen, and A. J. Thakkar, J. Chem. Phys. JCPSA676, 3057 (1982).en_US
dc.identifier.citedreferenceJ. Hepburn, G. Scoles, and R. Penco, Chem. Phys. Lett. CHPLBC36, 451 (1975).en_US
dc.identifier.citedreferenceF. B. Brown and D. G. Truhlar, Chem. Phys. Lett. CHPLBC117, 307 (1985).en_US
dc.identifier.citedreferenceK. Higgins, F.-M. Tao, and W. Klemperer, J. Chem. Phys. JCPSA6109, 3048 (1998).en_US
dc.identifier.citedreferenceJ. M. Bowman and B. Gazdy, J. Chem. Phys. JCPSA694, 816 (1991).en_US
dc.identifier.citedreferenceB. Gazdy and J. M. Bowman, J. Chem. Phys. JCPSA695, 6309 (1991).en_US
dc.identifier.citedreferenceJ. M. Bowman and B. Gazdy, Chem. Phys. Lett. CHPLBC200, 311 (1992).en_US
dc.identifier.citedreferenceJ. M. Hutson, A. Ernesti, M. M. Law, C. F. Roche, and R. J. Wheatley, J. Chem. Phys. JCPSA6105, 9130 (1996).en_US
dc.identifier.citedreferenceJ. M. Hutson, J. Chem. Phys. JCPSA691, 4448 (1989).en_US
dc.identifier.citedreferenceW. B. Chapman, M. J. Weilda, and D. J. Nesbitt, J. Chem. Phys. JCPSA6106, 2248 (1997).en_US
dc.identifier.citedreferenceC. M. Lovejoy and D. J. Nesbitt, J. Chem. Phys. JCPSA691, 2790 (1989).en_US
dc.identifier.citedreferenceM. R. Keenan, L. W. Buxton, E. J. Campbell, A. C. Legon, and W. H. Flygare, J. Chem. Phys. JCPSA674, 2133 (1981).en_US
dc.identifier.citedreferenceT. A. Dixon, C. H. Joyner, F. A. Baiocchi, and W. Klemperer, J. Chem. Phys. JCPSA674, 6539 (1981).en_US
dc.identifier.citedreferenceG. T. Fraser and A. S. Pine, J. Chem. Phys. JCPSA685, 2502 (1986).en_US
dc.identifier.citedreferenceJ. T. Farrell, Jr., O. Sneh, A. Mcllroy, A. E. W. Knight, and D. J. Nesbitt, J. Chem. Phys. JCPSA697, 7967 (1992).en_US
dc.identifier.citedreferenceA. D. Buckingham, P. W. Fowler, and J. M. Hutson, Chem. Rev. CHREAY88, 963 (1988).en_US
dc.identifier.citedreferenceT. H. Dunning, Jr., J. Chem. Phys. JCPSA690, 1007 (1989).en_US
dc.identifier.citedreferenceD. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. JCPSA6100, 2975 (1994).en_US
dc.identifier.citedreferenceD. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. JCPSA698, 1358 (1993).en_US
dc.identifier.citedreferenceNWChem Version 3.3.1, as developed and distributed by Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 USA, and funded by the U.S. Department of Energy, was used to obtain some of these results.en_US
dc.identifier.citedreferenceA. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Macmillan, New York, 1989).en_US
dc.identifier.citedreferenceLecture Notes in Chemistry: Potential Energy Surfaces, edited by A. F. Sax (Springer, Berlin, 1999).en_US
dc.identifier.citedreferenceJ. N. Murrell, S. Carter, S. C. Farantos, P. Huxley, and A. J. C. Varandas, Molecular Potential Energy Functions (John Wiley & Sons, New York, 1984).en_US
dc.identifier.citedreferenceT. Hollebeek, T.-S. Ho, and H. Rabitz, Constructing multidimensional molecular potential energy surfaces from ab initio data, in Annual Review of Physical Chemistry volume 50, edited by H. L. Strauss (Annual Reviews, Palo Alto, 1999), p. 537.en_US
dc.identifier.citedreferenceP. Soldán and J. M. Hutson, J. Chem. Phys. JCPSA6112, 4415 (2000).en_US
dc.identifier.citedreferenceT.-S. Ho and H. Rabitz, J. Chem. Phys. JCPSA6104, 2584 (1996).en_US
dc.identifier.citedreferenceT.-S. Ho and H. Rabitz, J. Chem. Phys. JCPSA6113, 3960 (2000).en_US
dc.identifier.citedreferenceH.-J. Werner and B. Follmeg, J. Chem. Phys. JCPSA691, 5425 (1989).en_US
dc.identifier.citedreferenceA. D. Esposti, A. Berning, and H.-J. Werner, J. Chem. Phys. JCPSA6103, 2067 (1995).en_US
dc.identifier.citedreferenceC.-C. Chuang, K. J. Higgins, H. C. Fu, and W. Klemperer, J. Chem. Phys. JCPSA6112, 7022 (2000).en_US
dc.identifier.citedreferenceC.-C. Chuang and W. Klemperer, J. Chem. Phys. JCPSA6113, 4116 (2000).en_US
dc.identifier.citedreferenceJ. W. Cooley, Math. Comput. MCMPAF15, 363 (1961).en_US
dc.identifier.citedreferenceB. W. Shore, J. Chem. Phys. JCPSA659, 6450 (1973).en_US
dc.identifier.citedreferenceJ. M. Alvariño, L. F. González, M. L. Hernández, and E. Martínez, Spectrosc. Lett. SPLEBX16, 541 (1983).en_US
dc.identifier.citedreferenceJ. A. Coxon and P. G. Hajigeorgiou, J. Mol. Spectrosc. JMOSA3142, 254 (1990).en_US
dc.identifier.citedreferenceF. Castaño, J. de Juan, and E. Martinez, J. Chem. Educ. JCEDA860, 91 (1983).en_US
dc.identifier.citedreferenceLEVEL 7.0, “A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels,” Copyright 1999 by Robert J. Le Roy, Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada.en_US
dc.identifier.citedreferenceJ. M. Hutson, BOUND computer code, version 5 (1993), distributed by Collaborative Computational Project No. 6 of the Science and Engineering Research Council (UK).en_US
dc.identifier.citedreferenceJ. M. Hutson, Comput. Phys. Commun. CPHCBZ84, 1 (1994).en_US
dc.identifier.citedreferenceH.-C. Chang, F.-M. Tao, W. Klemperer, C. Healey, and J. M. Hutson, J. Chem. Phys. JCPSA699, 9337 (1993).en_US
dc.identifier.citedreferenceD. E. Manolopoulos, J. Chem. Phys. JCPSA685, 6425 (1986).en_US
dc.identifier.citedreferenceM. H. Alexander and D. E. Manolopoulos, J. Chem. Phys. JCPSA686, 2044 (1987).en_US
dc.identifier.citedreferenceHIBRIDON™ is a package of programs for the time-independent quantum treatment of inelastic collisions and photodissociation written by M. H. Alexander, D. E. Manolopoulos, H.-J. Werner, and B. Follmeg, with contributions by P. F. Vohralik, D. Lemoine, G. Corey et al.en_US
dc.identifier.citedreferenceM. H. Alexander, J. Chem. Phys. JCPSA681, 4510 (1984).en_US
dc.identifier.citedreferenceN. Balakrishnan, R. C. Forrey, and A. Dalgarno, Astrophys. J. ASJOAB514, 520 (1999).en_US
dc.identifier.citedreferenceD. R. Flower, E. Roueff, and C. J. Zeippen, J. Phys. B: At., Mol. Opt. Phys. JPAPEH31, 1105 (1998).en_US
dc.identifier.citedreferenceR. T. Pack, J. Chem. Phys. JCPSA660, 633 (1974).en_US
dc.identifier.citedreferenceP. McGuire and D. J. Kouri, J. Chem. Phys. JCPSA660, 2488 (1974).en_US
dc.identifier.citedreferenceP. McGuire, Chem. Phys. CMPHC213, 81 (1976).en_US
dc.identifier.citedreferenceA. E. DePristo and M. H. Alexander, Chem. Phys. CMPHC219, 181 (1977).en_US
dc.identifier.citedreferenceD. J. Kouri, T. G. Heil, and Y. Shimoni, J. Chem. Phys. JCPSA665, 1462 (1976).en_US
dc.identifier.citedreferenceD. R. Flower and D. J. Kirkpatrick, J. Phys. B JPAMA415, 1701 (1982).en_US
dc.identifier.citedreferenceA. J. Banks, D. C. Clary, and H.-J. Werner, J. Chem. Phys. JCPSA684, 3788 (1986).en_US
dc.identifier.citedreferenceS. Bosanac, Phys. Rev. A PLRAAN22, 2617 (1980).en_US
dc.identifier.citedreferenceI. NoorBatcha and N. Sathyamurthy, Chem. Phys. Lett. CHPLBC79, 264 (1981).en_US
dc.identifier.citedreferenceS. Clare, A. J. Marks, and A. J. McCaffery, J. Chem. Phys. JCPSA6111, 9287 (1999).en_US
dc.identifier.citedreferenceP. M. Agrawal, S. Tilwankar, and N. K. Dabkara, J. Chem. Phys. JCPSA6108, 4854 (1998).en_US
dc.identifier.citedreferenceT. A. Brunner, N. Smith, A. W. Karp, and D. Pritchard, J. Chem. Phys. JCPSA674, 3324 (1981).en_US
dc.identifier.citedreferenceB. J. Whitaker and P. Brechignac, Chem. Phys. Lett. CHPLBC95, 407 (1983).en_US
dc.identifier.citedreferenceA. J. McCaffery, Z. T. Alwahabi, M. A. Osborne, and C. J. Williams, J. Chem. Phys. JCPSA698, 4586 (1993).en_US
dc.identifier.citedreferenceP. M. Agrawal and N. C. Agrawal, Chem. Phys. Lett. CHPLBC118, 213 (1985).en_US
dc.identifier.citedreferenceJ. A. Serri, R. M. Bilotta, and D. E. Pritchard, J. Chem. Phys. JCPSA677, 2940 (1982).en_US
dc.identifier.citedreferenceM. A. Osborne and A. J. McCaffery, J. Chem. Phys. JCPSA6101, 5604 (1994).en_US
dc.identifier.citedreferenceP. M. Agrawal and L. M. Raff, J. Chem. Phys. JCPSA675, 2163 (1981).en_US
dc.identifier.citedreferenceP. M. Agrawal and L. M. Raff, J. Chem. Phys. JCPSA674, 3292 (1981).en_US
dc.identifier.citedreferenceJ. C. Polanyi and K. B. Woodall, J. Chem. Phys. JCPSA656, 1563 (1972).en_US
dc.identifier.citedreferenceR. Ramaswamy, A. E. Depristo, and H. Rabitz, Chem. Phys. Lett. CHPLBC61, 495 (1979).en_US
dc.identifier.citedreferenceS. Clare, A. J. Marks, and A. J. McCaffery, J. Phys. Chem. JPCHAX104, 7181 (2000).en_US
dc.identifier.citedreferenceP. M. Agrawal, N. C. Agrawal, and V. Garg, J. Chem. Phys. JCPSA683, 4444 (1985).en_US
dc.identifier.citedreferenceS. L. Dexheimer, M. Durand, T. A. Brunner, and D. E. Pritchard, J. Chem. Phys. JCPSA676, 4996 (1982).en_US
dc.identifier.citedreferenceA. J. McCaffery and Z. T. Alwahabi, Phys. Rev. A PLRAAN43, 611 (1991).en_US
dc.identifier.citedreferenceN. C. Lang, J. C. Polanyi, and J. Wanner, Chem. Phys. CMPHC224, 219 (1977).en_US
dc.identifier.citedreferenceReinhard Schinke, J. Chem. Phys. JCPSA675, 5205 (1981).en_US
dc.identifier.citedreferenceJ. M. Hutson and F. R. McCourt, J. Chem. Phys. JCPSA680, 1135 (1984).en_US
dc.identifier.citedreferenceS. Green, J. Chem. Phys. JCPSA682, 4548 (1985).en_US
dc.identifier.citedreferenceA. Palma and S. Green, J. Chem. Phys. JCPSA685, 1333 (1986).en_US
dc.identifier.citedreferenceJ. P. Reid, C. J. S. M. Simpson, and H. M. Quiney, Chem. Phys. Lett. CHPLBC256, 531 (1996).en_US
dc.identifier.citedreferenceJ. P. Reid, C. L. S. M. Simpson, and H. M. Quiney, J. Chem. Phys. JCPSA6107, 9929 (1997).en_US
dc.identifier.citedreferenceJ. P. Reid, A. J. Thakkar, P. W. Barnes, E. F. Archibong, H. M. Quiney, and C. J. S. M. Simpson, J. Chem. Phys. JCPSA6107, 2329 (1997).en_US
dc.identifier.citedreferenceJ. P. Reid, C. J. S. M. Simpson, and H. M. Quiney, J. Chem. Phys. JCPSA6106, 4931 (1997).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.