Show simple item record

Differential display analysis of Porphyromonas gingivalis gene activation response to heat and oxidative stress

dc.contributor.authorShelburne, Charles E.en_US
dc.contributor.authorGleason, R. M.en_US
dc.contributor.authorCoulter, W. A.en_US
dc.contributor.authorLantz, M. S.en_US
dc.contributor.authorLopatin, Dennis E.en_US
dc.date.accessioned2010-06-01T18:20:53Z
dc.date.available2010-06-01T18:20:53Z
dc.date.issued2005-08en_US
dc.identifier.citationShelburne, C. E.; Gleason, R. M.; Coulter, W. A.; Lantz, M. S.; Lopatin, D. E. (2005). "Differential display analysis of Porphyromonas gingivalis gene activation response to heat and oxidative stress." Oral Microbiology and Immunology 20(4): 233-238. <http://hdl.handle.net/2027.42/71557>en_US
dc.identifier.issn0902-0055en_US
dc.identifier.issn1399-302Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71557
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15943768&dopt=citationen_US
dc.description.abstractThe etiologic relationship between periodontitis and Porphyromonas gingivalis is attributed to the ability of the organism to express a variety of virulence factors, many of which are cell surface components including lipopolysaccharide and arginine-specific cysteine proteases (Arg-gingipains, RgpA, and RgpB). P. gingivalis responds to the stress of rapid elevation in temperature by activating a set of genes to produce heat shock proteins that mediate the effects of sudden changes in environmental temperatures by repairing or eliminating cellular proteins denatured by that stress. Methods:  We used restriction fragment differential display (RFDD) to identify and measure the genes expressed by surrogates of environmental stresses, heat and oxidative stress. The results were then confirmed using quantitative reverse-transcription polymerase chain reaction. Results:  We selected 16 genes differentially induced from over 800 total expression fragments on the RFDD gels for further characterization. With primers designed from those fragments we found that a + 5°C heat shock caused a statistically significant increase in expression compared 12 of 18 untreated genes tested. The exposure of P. gingivalis to atmospheric oxygen resulted in statistically significant increases in five of the target genes. These genes are likely involved in transport and synthesis of components of the lipopolysaccharide biosynthetic pathway important in anchoring the Arg-gingipains required for virulence-related activities. Conclusion:  These results emphasize the need for studies to measure the coordinated responses of bacteria like P. gingivalis which use a multitude of interrelated metabolic activities to survive the environmental hazards of the infection process.en_US
dc.format.extent199552 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherMunksgaard International Publishersen_US
dc.publisherBlackwell Publishing Ltden_US
dc.rights2005 Blackwell Munksgaarden_US
dc.subject.otherDifferential Displayen_US
dc.subject.otherEnvironmental Stressen_US
dc.subject.otherGene Activationen_US
dc.subject.otherGingipainen_US
dc.subject.otherHeat Shocken_US
dc.subject.otherLipopolysaccharideen_US
dc.subject.otherOxidative Stressen_US
dc.subject.otherPorphyromonas Gingivalisen_US
dc.subject.otherPeriodontitisen_US
dc.subject.otherQuantitative Polymerase Chain Reactionen_US
dc.titleDifferential display analysis of Porphyromonas gingivalis gene activation response to heat and oxidative stressen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, School of Dentistry, The University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationotherBioMaterials Technology Center, 3M Company, St. Paul, MN, USAen_US
dc.contributor.affiliationotherOral Research Centre, School of Dentistry, Queen's University of Belfast, Belfast, Northern Irelanden_US
dc.identifier.pmid15943768en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71557/1/j.1399-302X.2005.00219.x.pdf
dc.identifier.doi10.1111/j.1399-302X.2005.00219.xen_US
dc.identifier.sourceOral Microbiology and Immunologyen_US
dc.identifier.citedreferenceAbaibou H, Chen Z, Olango GJ, Liu Y, Edwards J, Fletcher HM. vimA gene downstream of recA is involved in virulence modulation in Porphyromonas gingivalis W83. Infect Immun 2001: 69: 325 – 335.en_US
dc.identifier.citedreferenceAltschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990: 215: 403 – 410.en_US
dc.identifier.citedreferenceBachem CW, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RG. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 1996: 9: 745 – 753.en_US
dc.identifier.citedreferenceBrown MB, Forsythe AB. Robust tests for the equality of variances. J Am Statist Assoc 1974: 69: 264 – 267.en_US
dc.identifier.citedreferenceBustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 2000: 25: 169 – 193.en_US
dc.identifier.citedreferenceCaldas T, Laalami S, Richarme G. Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. J Biol Chem 2000: 275: 855 – 860.en_US
dc.identifier.citedreferenceChen T, Dong H, Yong R, Duncan MJ. Pleiotropic pigmentation mutants of Porphyromonas gingivalis. Microb Pathog 2000: 28: 235 – 247.en_US
dc.identifier.citedreferenceCurtis MA, Aduse-Opoku J, Rangarajan M. Cysteine proteases of Porphyromonas gingivalis. Crit Rev Oral Biol Med 2001: 12: 192 – 216.en_US
dc.identifier.citedreferenceDu LD, Kolenbrander PE. Identification of saliva-regulated genes of Streptococcus gordonii DL1 by differential display using random arbitrarily primed PCR. Infect Immun 2000: 68: 4834 – 4837.en_US
dc.identifier.citedreferenceEleaume H, Jabbouri S. Comparison of two standardisation methods in real-time quantitative RT-PCR to follow Staphylococcus aureus genes expression during in vitro growth. J Microbiol Methods 2004: 59: 363 – 370.en_US
dc.identifier.citedreferenceFrandsen EV, Poulsen K, Curtis MA, Kilian M. Evidence of recombination in Porphyromonas gingivalis and random distribution of putative virulence markers. Infect Immun 2001: 69: 4479 – 4485.en_US
dc.identifier.citedreferenceGravesen A, Sorensen K, Aarestrup FM, Knochel S. Spontaneous nisin-resistant Listeria monocytogenes mutants with increased expression of a putative penicillin-binding protein and their sensitivity to various antibiotics. Microb Drug Resist 2001: 7: 127 – 135.en_US
dc.identifier.citedreferenceGravesen A, Warthoe P, Knochel S, Thirstrup K. Restriction fragment differential display of pediocin-resistant Listeria monocytogenes 412 mutants shows consistent overexpression of a putative beta-glucoside-specific PTS system. Microbiology 2000: 146 ( 6 ): 1381 – 1389.en_US
dc.identifier.citedreferenceGrenier D, Belanger M. Protective effect of Porphyromonas gingivalis outer membrane vesicles against bactericidal activity of human serum. Infect Immun 1991: 59: 3004 – 3008.en_US
dc.identifier.citedreferenceHintermann E, Haake SK, Christen U, Sharabi A, Quaranta V. Discrete proteolysis of focal contact and adherens junction components in Porphyromonas gingivalis -infected oral keratinocytes: a strategy for cell adhesion and migration disabling. Infect Immun 2002: 70: 5846 – 5856.en_US
dc.identifier.citedreferenceKapatral V, Anderson I, Ivanova N, Reznik G, Los T, Lykidis A, et al. Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J Bacteriol 2002: 184: 2005 – 2018.en_US
dc.identifier.citedreferenceLamont RJ, Jenkinson HF. Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 1998: 62: 1244 – 1263.en_US
dc.identifier.citedreferenceLa Teana A, Gualerzi CO, Dahlberg AE. Initiation factor IF 2 binds to the alpha-sarcin loop and helix 89 of Escherichia coli 23S ribosomal RNA. RNA 2001: 7: 1173 – 1179.en_US
dc.identifier.citedreferenceLeke N, Grenier D, Goldner M, Mayrand D. Effects of hydrogen peroxide on growth and selected properties of Porphyromonas gingivalis. FEMS Microbiol Lett 1999: 174: 347 – 353.en_US
dc.identifier.citedreferenceLopatin DE, Combs A, Sweier DG, Fenno JC, Dhamija S. Characterization of heat-inducible expression and cloning of HtpG (Hsp90 homologue) of Porphyromonas gingivalis. Infect Immun 2000: 68: 1980 – 1987.en_US
dc.identifier.citedreferenceLopatin DE, Jaramillo E, Edwards CA, Van Poperin N, Combs A, Shelburne CE. Cellular localization of a Hsp90 homologue in Porphyromonas gingivalis. FEMS Microbiol Lett 1999: 181: 9 – 16.en_US
dc.identifier.citedreferenceLu B, McBride BC. Stress response of Porphyromonas gingivalis. Oral Microbiol Immunol 1994: 9: 166 – 173.en_US
dc.identifier.citedreferenceLynch MC, Kuramitsu HK. Role of superoxide dismutase activity in the physiology of Porphyromonas gingivalis. Infect Immun 1999: 67: 3367 – 3375.en_US
dc.identifier.citedreferenceMaeda H, Miyamoto M, Hongyo H, Nagai A, Kurihara H, Muryama Y. Heat shock protein 60 (GroEL) from Porphyromonas gingivalis. molecular cloning and sequence analysis of its gene and purification of the recombinant protein. FEMS Microbiol Lett 1994: 124: 121 – 122.en_US
dc.identifier.citedreferenceNelson KE, Fleischmann RD, DeBoy RT, Paulsen IT, Fouts DE, Eisen JA, et al. Complete genome sequence of the oral pathogenic Bacterium porphyromonas gingivalis strain W83. J Bacteriol 2003: 185: 5591 – 5601.en_US
dc.identifier.citedreferenceO'Brien-Simpson NM, Black CL, Bhogal PS, Cleal SM, Slakeski N, Higgins TJ, et al. Serum immunoglobulin G (IgG) and IgG subclass responses to the RgpA-Kgp proteinase-adhesin complex of Porphyromonas gingivalis in adult periodontitis. Infect Immun 2000: 68: 2704 – 2712.en_US
dc.identifier.citedreferenceO'Brien-Simpson NM, Paolini RA, Hoffmann B, et al. Role of RgpA, RgpB, and Kgp proteinases in virulence of Porphyromonas gingivalis W50 in a murine lesion model. Infect Immun 2001: 69: 7527 – 7534.en_US
dc.identifier.citedreferenceRocha ER, Owens G Jr, Smith CJ. The redox-sensitive transcriptional activator OxyR regulates the peroxide response regulon in the obligate anaerobe Bacteroides fragilis. J Bacteriol 2000: 182: 5059 – 5069.en_US
dc.identifier.citedreferenceShoji M, Ratnayake DB, Shi Y, Kadowaki T, Yamamoto K, Yoshimura F, et al.. Construction and characterization of a nonpigmented mutant of Porphyromonas gingivalis: cell surface polysaccharide as an anchorage for gingipains. Microbiology 2002: 148: 1183 – 1191.en_US
dc.identifier.citedreferenceSlakeski N, Cleal SM, Bhogal PS, Reynolds EC. Characterization of a Porphyromonas gingivalis gene prtK that encodes a lysine-specific cysteine proteinase and three sequence-related adhesins. Oral Microbiol Immunol 1999: 14: 92 – 97.en_US
dc.identifier.citedreferenceSlaney JM, Rangarajan M, Aduse-Opoku J, Fawell S, Darby I, Kinane D, et al. Recognition of the carbohydrate modifications to the RgpA protease of Porphyromonas gingivalis by periodontal patient serum IgG. J Periodontal Res 2002: 37: 215 – 222.30.en_US
dc.identifier.citedreferenceSmalley JW, Birss AJ, Percival R, Marsh PD. Temperature elevation regulates iron protoporphyrin IX and hemoglobin binding by Porphyromonas gingivalis. Curr Microbiol 2000: 41: 328 – 335.en_US
dc.identifier.citedreferenceSmalley JW, Birss AJ, Silver J. The periodontal pathogen Porphyromonas gingivalis harnesses the chemistry of the mu-oxo bishaem of iron protoporphyrin IX to protect against hydrogen peroxide. FEMS Microbiol Lett 2000: 183: 159 – 164.en_US
dc.identifier.citedreferenceTanner A, Maiden MF, Macuch PJ, Murray LL, Kent RL Jr. Microbiota of health, gingivitis, and initial periodontitis. J Clin Periodontol 1998: 25: 85 – 98.en_US
dc.identifier.citedreferenceTokuda M, Duncan M, Cho MI, Kuramitsu HK. Role of Porphyromonas gingivalis protease activity in colonization of oral surfaces. Infect Immun 1996: 64: 4067 – 4073.en_US
dc.identifier.citedreferenceVandecasteele SJ, Peetermans WE, Merckx R, Van Ranst M, Van Eldere J. Use of gDNA as internal standard for gene expression in staphylococci in vitro and in vivo. Biochem Biophys Res Commun 2002: 291: 528 – 534.en_US
dc.identifier.citedreferenceVeith PD, Talbo GH, Slakeski N, Dashper SG, Moore C, Paolini RA, et al. Major outer membrane proteins and proteolytic processing of RgpA and Kgp of Porphyromonas gingivalis W50. Biochem J 2002: 363: 105 – 115.en_US
dc.identifier.citedreferenceVeith PD, Talbo GH, Slakeski N, Reynolds EC. Identification of a novel heterodimeric outer membrane protein of Porphyromonas gingivalis by two-dimensional gel electrophoresis and peptide mass fingerprinting. Eur J Biochem 2001: 268: 4748 – 4757.en_US
dc.identifier.citedreferenceWu Y, Lee SW, Hillman JD, Progulske-Fox A. Identification and testing of Porphyromonas gingivalis virulence genes with a pPGIVET system. Infect Immun 2002: 70: 928 – 937.en_US
dc.identifier.citedreferenceWylie JL, Berry JD, McClarty G. Chlamydia trachomatis CTP synthetase: molecular characterization and developmental regulation of expression. Mol Microbiol 1996: 22: 631 – 642.en_US
dc.identifier.citedreferenceXie H, Cai S, Lamont RJ. Environmental regulation of fimbrial gene expression in Porphyromonas gingivalis. Infect Immun 1997: 65: 2265 – 2271.en_US
dc.identifier.citedreferenceYoshida A, Nakano Y, Yamashita Y, Oho T, Shibata Y, Ohishi M, et al. A novel dnaK operon from Porphyromonas gingivalis. FEBS Lett 1999: 446: 287 – 291.en_US
dc.identifier.citedreferenceZhang J, Dong H, Kashket S, Duncan MJ. IL-8 degradation by Porphyromonas gingivalis proteases. Microb Pathog 1999: 26: 275 – 280.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.