Show simple item record

LRb signals act within a distributed network of leptin-responsive neurones to mediate leptin action

dc.contributor.authorLeinninger, Gina M.en_US
dc.contributor.authorMyers, M. G.en_US
dc.date.accessioned2010-06-01T18:22:28Z
dc.date.available2010-06-01T18:22:28Z
dc.date.issued2008-01en_US
dc.identifier.citationLeinninger, G. M.; Myers, M. G. (2008). "LRb signals act within a distributed network of leptin-responsive neurones to mediate leptin action." Acta Physiologica 192(1): 49-59. <http://hdl.handle.net/2027.42/71583>en_US
dc.identifier.issn1748-1708en_US
dc.identifier.issn1748-1716en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71583
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18171429&dopt=citationen_US
dc.format.extent598560 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2008 The Authors Journal compilation 2008 Scandinavian Physiological Societyen_US
dc.subject.otherDopamineen_US
dc.subject.otherEnergy Balanceen_US
dc.subject.otherHypothalamusen_US
dc.subject.otherLeptinen_US
dc.subject.otherSTAT3en_US
dc.titleLRb signals act within a distributed network of leptin-responsive neurones to mediate leptin actionen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid18171429en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71583/1/j.1748-1716.2007.01784.x.pdf
dc.identifier.doi10.1111/j.1748-1716.2007.01784.xen_US
dc.identifier.sourceActa Physiologicaen_US
dc.identifier.citedreferenceAhima, R.S., Prabakaran, D., Mantzoros, C.S., Qu, D., Lowell, B.B., Maratos-Flier, E. & Flier, J.S. 1996. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250 – 252.en_US
dc.identifier.citedreferenceArgetsinger, L.S., Kouadio, J.L., Steen, H., Stensballe, A., Jensen, O.N. & Carter-Su, C. 2004. Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity. Mol Cell Biol 24, 4955 – 4967.en_US
dc.identifier.citedreferenceBalthasar, N., Coppari, R., McMinn, J., Liu, S.M., Lee, C.E., Tang, V., Kenny, C.D., McGovern, R.A., Chua, S.C. Jr, Elmquist, J.K. & Lowell, B.B. 2004. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42, 983 – 991.en_US
dc.identifier.citedreferenceBanks, A.S., Davis, S.M., Bates, S.H. & Myers, M.G., Jr. 2000. Activation of downstream signals by the long form of the leptin receptor. J Biol Chem 275, 14563 – 14572.en_US
dc.identifier.citedreferenceBaskin, D.G., Schwartz, M.W., Seeley, R.J., Woods, S.C., Porte, D., Jr, Breininger, J.F., Jonak, Z., Schaefer, J., Krouse, M., Burghardt, C., Campfield, L.A., Burn, P. & Kochan, J.P. 1999. Leptin receptor long-form splice-variant protein expression in neuron cell bodies of the brain and co-localization with neuropeptide Y mRNA in the arcuate nucleus. J Histochem Cytochem 47, 353 – 362.en_US
dc.identifier.citedreferenceBates, S.H. & Myers, M.G., Jr. 2003. The role of leptin receptor signaling in feeding and neuroendocrine function. Trends Endocrinol Metab 14, 447 – 452.en_US
dc.identifier.citedreferenceBates, S.H., Stearns, W.H., Schubert, M., Tso, A.W.K., Wang, Y., Banks, A.S., Dundon, T.A., Lavery, H.J., Haq, A.K., Maratos-Flier, E., Neel, B.G., Schwartz, M.W. & Myers, M.G., Jr. 2003. STAT3 signaling is required for leptin regulation of energy balance but not reproduction. Nature 421, 856 – 859.en_US
dc.identifier.citedreferenceBates, S.H., Dundon, T.A., Seifert, M., Carlson, M., Maratos-Flier, E. & Myers, M.G., Jr. 2004. LRb-STAT3 signaling is required for the neuroendocrine regulation of energy expenditure by leptin. Diabetes 53, 3067 – 3073.en_US
dc.identifier.citedreferenceBates, S.H., Kulkarni, R.N., Seifert, M. & Myers, M.G., Jr. 2005. Roles for leptin receptor/STAT3-dependent and -independent signals in the regulation of glucose homeostasis. Cell Metab 1, 169 – 178.en_US
dc.identifier.citedreferenceBergman, R.N. & Ader, M. 2005. Atypical antipsychotics and glucose homeostasis. J Clin Psychiatry 66, 504 – 514.en_US
dc.identifier.citedreferenceBjorbaek, C., Elmquist, J.K., Frantz, J.D., Shoelson, S.E. & Flier, J.S. 1998. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell 1, 619 – 625.en_US
dc.identifier.citedreferenceBjorbaek, C., Lavery, H.J., Bates, S.H., Olson, R.K., Davis, S.M., Flier, J.S. & Myers, M.G., Jr. 2000. SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J Biol Chem 275, 40649 – 40657.en_US
dc.identifier.citedreferenceBjorbaek, C., Buchholz, R.M., Davis, S.M., Bates, S.H., Pierroz, D.D., Gu, H., Neel, B.G., Myers, M.G., Jr & Flier, J.S. 2001. Divergent roles of SHP-2 in ERK activation by leptin receptors. J Biol Chem 276, 4747 – 4755.en_US
dc.identifier.citedreferenceBjornholm, M., Munzberg, H., Leshan, R.L., Villanueva, E., Bates, S.H., Louis, G.W., Jones, J.C., Ishida-Takahashi, R., Bjorbaek, C. & Myers, M.G., Jr. 2007. Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function. J Clin Invest 117, 1354 – 1360.en_US
dc.identifier.citedreferenceBodary, P.F., Westrick, R.J., Wickenheiser, K.J., Shen, Y. & Eitzman, D.T. 2002. Effect of leptin on arterial thrombosis following vascular injury in mice. JAMA 287, 1706 – 1709.en_US
dc.identifier.citedreferenceBodary, P.F., Shen, Y., Ohman, M., Bahrou, K.L., Vargas, F.B., Cudney, S.S., Wickenheiser, K.J., Myers, M.G., Jr & Eitzman, D.T. 2007. Leptin regulates neointima formation after arterial injury through mechanisms independent of blood pressure and the leptin receptor/STAT3 signaling pathways involved in energy balance. Arterioscler Thromb Vasc Biol 27, 70 – 76.en_US
dc.identifier.citedreferenceBoston, B.A., Blaydon, K.M., Varnerin, J. & Cone, R.D. 1997. Independent and additive effects of central POMC and leptin pathways on murine obesity. Science 278, 1641 – 1644.en_US
dc.identifier.citedreferenceBuettner, C., Pocai, A., Muse, E.D., Etgen, A.M., Myers, M.G., Jr & Rossetti, L. 2006. Critical role of STAT3 in leptin’s metabolic actions. Cell Metab 4, 49 – 60.en_US
dc.identifier.citedreferenceButler, A.A. & Cone, R.D. 2002. The melanocortin receptors: lessons from knockout models. Neuropeptides 36, 77 – 84.en_US
dc.identifier.citedreferenceButler, A.A., Kesterson, R.A., Khong, K., Cullen, M.J., Pelleymounter, M.A., Dekoning, J., Baetscher, M. & Cone, R.D. 2000. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 141, 3518 – 3521.en_US
dc.identifier.citedreferenceCarpenter, L.R., Farruggella, T.J., Symes, A., Karow, M.L. & Yancopoulos, G. 1998. Enhancing leptin response by preventing SH2-containing phosphatase 2 interaction with Ob receptor. Proc Natl Acad Sci USA 95, 6061 – 6066.en_US
dc.identifier.citedreferenceCarpino, N., Kobayashi, R., Zang, H., Takahashi, Y., Jou, S.T., Feng, J., Nakajima, H. & Ihle, J.N. 2002. Identification, cDNA cloning, and targeted deletion of p70, a novel, ubiquitously expressed SH3 domain-containing protein. Mol Cell Biol 22, 7491 – 7500.en_US
dc.identifier.citedreferenceCarr, K.D. 2006. Chronic food restriction: enhancing effects on drug reward and striatal cell signaling. Physiol Behav 91, 459 – 472.en_US
dc.identifier.citedreferenceChen, A.S., Marsh, D.J., Trumbauer, M.E., Frazier, E.G., Guan, X.M., Yu, H., Rosenblum, C.I., Vongs, A., Feng, Y., Cao, L. et al. 2000. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 26, 97 – 102.en_US
dc.identifier.citedreferenceChua, S.C., Jr, Koutras, I.K., Han, L., Liu, S.M., Kay, J., Young, S.J., Chung, W.K. & Leibel, R.L. 1997. Fine structure of the murine leptin receptor gene: splice site suppression is required to form two alternatively spliced transcripts. Genomics 45, 264 – 270.en_US
dc.identifier.citedreferenceClark, J.T., Kalra, P.S. & Kalra, S.P. 1985. Neuropeptide Y stimulates feeding but inhibits sexual behavior in rats. Endocrinology 117, 2435 – 2442.en_US
dc.identifier.citedreferenceClement, K., Vaisse, C., Lahlou, N., Cabrol, S., Pelloux, V., Cassuto, D., Gourmelen, M., Dina, C., Chambaz, J., Lacorte, J.M., Basdevant, A., Bougneres, P., leBouc, Y., Froguel, P. & Guy-Grand, B. 1998. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392, 398 – 401.en_US
dc.identifier.citedreferenceCota, D., Proulx, K., Smith, K.A., Kozma, S.C., Thomas, G., Woods, S.C. & Seeley, R.J. 2006. Hypothalamic mTOR signaling regulates food intake. Science 312, 927 – 930.en_US
dc.identifier.citedreferenceCouturier, C. & Jockers, R. 2003. Activation of the leptin receptor by a ligand-induced conformational change of constitutive receptor dimers. J Biol Chem 270, 26604 – 26611.en_US
dc.identifier.citedreferenceCowley, M.A., Smart, J.L., Rubinstein, M., Cerdan, M.G., Diano, S., Horvath, T.L., Cone, R.D. & Low, M.J. 2001. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480 – 484.en_US
dc.identifier.citedreferenceCui, Y., Huang, L., Elefteriou, F., Yang, G., Shelton, J.M., Giles, J.E., Oz, O.K., Pourbahrami, T., Lu, C.Y., Richardson, J.A., Karsenty, G. & Li, C. 2004. Essential role of STAT3 in body weight and glucose homeostasis. Mol Cell Biol 24, 258 – 269.en_US
dc.identifier.citedreferenceDevos, R., Guisez, Y., Van der Heyden, J., White, D.W., Kalai, M., Fountoulakis, M. & Plaetinck, G. 1997. Ligand-independent dimerization of the extracellular domain of the leptin receptor and determination of the stoichiometry of leptin binding. J Biol Chem 272, 18304 – 18310.en_US
dc.identifier.citedreferenceDhillon, H., Zigman, J.M., Ye, C., Lee, C.E., McGovern, R.A., Tang, V., Kenny, C.D., Christiansen, L.M., White, R.D., Edelstein, E.A. et al. 2006. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49, 191 – 203.en_US
dc.identifier.citedreferenceDiLeone, R.J., Georgescu, D. & Nestler, E.J. 2003. Lateral hypothalamic neuropeptides in reward and drug addiction. Life Sci 73, 759 – 768.en_US
dc.identifier.citedreferenceDunn, S.L., Bjornholm, M., Bates, S.H., Chen, Z., Seifert, M. & Myers, M.G., Jr. 2005. Feedback inhibition of leptin receptor/Jak2 signaling via Tyr1138 of the leptin receptor and suppressor of cytokine signaling 3. Mol Endocrinol 19, 925 – 938.en_US
dc.identifier.citedreferenceEllacott, K.L. & Cone, R.D. 2006. The role of the central melanocortin system in the regulation of food intake and energy homeostasis: lessons from mouse models. Philos Trans R Soc Lond B Biol Sci 361, 1265 – 1274.en_US
dc.identifier.citedreferenceEllacott, K.L., Halatchev, I.G. & Cone, R.D. 2006a. Characterization of leptin-responsive neurons in the caudal brainstem. Endocrinology 147, 3190 – 3195.en_US
dc.identifier.citedreferenceEllacott, K.L., Halatchev, I.G. & Cone, R.D. 2006b. Interactions between gut peptides and the central melanocortin system in the regulation of energy homeostasis. Peptides 27, 340 – 349.en_US
dc.identifier.citedreferenceElmquist, J.K., Bjorbaek, C., Ahima, R.S., Flier, J.S. & Saper, C.B. 1998a. Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 395, 535 – 547.en_US
dc.identifier.citedreferenceElmquist, J.K., Maratos-Flier, E., Saper, C.B. & Flier, J.S. 1998b. Unraveling the central nervous system pathways underlying responses to leptin. Nat Neurosci 1, 445 – 449.en_US
dc.identifier.citedreferenceElmquist, J.K., Coppari, R., Balthasar, N., Ichinose, M. & Lowell, B.B. 2005. Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol 493, 63 – 71.en_US
dc.identifier.citedreferenceErickson, J.C., Hollopeter, G. & Palmiter, R.D. 1996. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 274, 1704 – 1707.en_US
dc.identifier.citedreferenceFeener, E.P., Rosario, F., Dunn, S.L., Stancheva, Z. & Myers, M.G., Jr. 2004. Tyrosine phosphorylation of Jak2 in the JH2 domain inhibits cytokine signaling. Mol Cell Biol 24, 4968 – 4978.en_US
dc.identifier.citedreferenceFeng, G.S. 1999. Shp-2 tyrosine phosphatase: signaling one cell or many. Exp Cell Res 253, 47 – 54.en_US
dc.identifier.citedreferenceFeng, J., Witthuhn, B.A., Matsuda, T., Kohlhuber, F., Kerr, I.M. & Ihle, J.N. 1997. Activation of Jak2 catalytic activity requires phosphorylation of Y 1007 in the kinase activation loop. Mol Cell Biol 17, 2497 – 2501.en_US
dc.identifier.citedreferenceFiglewicz, D.P. 2003. Adiposity signals and food reward: expanding the CNS roles of insulin and leptin. Am J Physiol Regul Integr Comp Physiol 284, R882 – R892.en_US
dc.identifier.citedreferenceFiglewicz, D.P., Evans, S.B., Murphy, J., Hoen, M. & Baskin, D.G. 2003. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 964, 107 – 115.en_US
dc.identifier.citedreferenceFiglewicz, D.P., Naleid, A.M. & Sipols, A.J. 2006. Modulation of food reward by adiposity signals. Physiol Behav 91, 473 – 478.en_US
dc.identifier.citedreferenceFriedman, J.M. & Halaas, J.L. 1998. Leptin and the regulation of body weight in mammals. Nature 395, 763 – 770.en_US
dc.identifier.citedreferenceFulton, S., Woodside, B. & Shizgal, P. 2000. Modulation of brain reward circuitry by leptin. Science 287, 125 – 128.en_US
dc.identifier.citedreferenceFulton, S., Richard, D., Woodside, B. & Shizgal, P. 2004. Food restriction and leptin impact brain reward circuitry in lean and obese Zucker rats. Behav Brain Res 155, 319 – 329.en_US
dc.identifier.citedreferenceFulton, S., Pissios, P., Manchon, R.P., Stiles, L., Frank, L., Pothos, E.N., Maratos-Flier, E. & Flier, J.S. 2006. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51, 811 – 822.en_US
dc.identifier.citedreferenceFunakoshi-Tago, M., Pelletier, S., Matsuda, T., Parganas, E. & Ihle, J.N. 2006. Receptor specific downregulation of cytokine signaling by autophosphorylation in the FERM domain of Jak2. EMBO J 25, 4763 – 4772.en_US
dc.identifier.citedreferenceGe, H., Huang, L., Pourbahrami, T. & Li, C. 2002. Generation of soluble leptin receptor by ectodomain shedding of membrane-spanning receptors in vitro and in vivo. J Biol Chem 277, 45898 – 45903.en_US
dc.identifier.citedreferenceGong, Y., Ishida-Takahashi, R., Villanueva, E.C., Fingar, D.C., MÜnzberg, H. & Myers, M.G., Jr. 2007. The long form of the leptin receptor regulates STAT5 and ribosomal protein S6 via alternate mechanisms. J Biol Chem 282, 31019 – 31027.en_US
dc.identifier.citedreferenceGrill, H.J. 2006. Distributed neural control of energy balance: contributions from hindbrain and hypothalamus. Obesity (Silver Spring) 14 ( Suppl. 5 ), 216S – 221S.en_US
dc.identifier.citedreferenceGrill, H.J., Schwartz, M.W., Kaplan, J.M., Foxhall, J.S., Breininger, J. & Baskin, D.G. 2002. Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 143, 239 – 246.en_US
dc.identifier.citedreferenceHaan, S., Hemmann, U., Hassiepen, U., Schaper, F., Schneider-Mergener, J., Wollmer, A., Heinrich, P.C. & Grotzinger, J. 1999. Characterization and binding specificity of the monomeric STAT3-SH2 domain. J Biol Chem 274, 1342 – 1348.en_US
dc.identifier.citedreferenceHarris, G.C., Wimmer, M. & Aston-Jones, G. 2005. A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437, 556 – 559.en_US
dc.identifier.citedreferenceHekerman, P., Zeidler, J., Bamberg-Lemper, S., Knobelspies, H., Lavens, D., Tavernier, J., Joost, H.G. & Becker, W. 2005. Pleiotropy of leptin receptor signalling is defined by distinct roles of the intracellular tyrosines. FEBS J 272, 109 – 119.en_US
dc.identifier.citedreferenceHommel, J.D., Trinko, R., Sears, R.M., Georgescu, D., Liu, Z.W., Gao, X.B., Thurmon, J.J., Marinelli, M. & DiLeone, R.J. 2006. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51, 801 – 810.en_US
dc.identifier.citedreferenceHoward, J.K., Cave, B.J., Oksanen, L.J., Tzameli, I., Bjorbaek, C. & Flier, J.S. 2004. Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med 10, 734 – 738.en_US
dc.identifier.citedreferenceHuo, L., Maeng, L., Bjorbaek, C. & Grill, H.J. 2007. Leptin and the control of food intake: neurons in the nucleus of the solitary tract are activated by both gastric distension and leptin. Endocrinology 148, 2189 – 2197.en_US
dc.identifier.citedreferenceHuszar, D., Lynch, C.A., Fairchild-Huntress, V., Dunmore, J.H., Fang, Q., Berkemeier, L.R., Gu, W., Kesterson, R.A., Boston, B.A., Cone, R.D., Smith, F.J., Campfield, L.A., Burn, P. & Lee, F. 1997. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131 – 141.en_US
dc.identifier.citedreferenceIhle, J.N. & Kerr, I.M. 1995. Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet 11, 69 – 74.en_US
dc.identifier.citedreferenceIshida-Takahashi, R., Rosario, F., Gong, Y., Kopp, K., Stancheva, Z., Chen, X., Feener, E.P. & Myers, M.G., Jr. 2006. Phosphorylation of Jak2 on Ser(523) inhibits Jak2-dependent leptin receptor signaling. Mol Cell Biol 26, 4063 – 4073.en_US
dc.identifier.citedreferenceKaelin, C.B., Gong, L., Xu, A.W., Yao, F., Hockman, K., Morton, G.J., Schwartz, M.W., Barsh, G.S. & MacKenzie, R.G. 2006. Signal transducer and activator of transcription (stat) binding sites but not stat3 are required for fasting-induced transcription of agouti-related protein messenger ribonucleic acid. Mol Endocrinol 20, 2591 – 2602.en_US
dc.identifier.citedreferenceKeilhack, H., David, F.S., McGregor, M., Cantley, L.C. & Neel, B.G. 2005. Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes. J Biol Chem 280, 30984 – 30993.en_US
dc.identifier.citedreferenceKelley, A.E. & Berridge, K.C. 2002. The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22, 3306 – 3311.en_US
dc.identifier.citedreferenceKloek, C., Haq, A.K., Dunn, S.L., Lavery, H.J., Banks, A.S. & Myers, M.G., Jr. 2002. Regulation of Jak kinases by intracellular leptin receptor sequences. J Biol Chem 277, 41547 – 41555.en_US
dc.identifier.citedreferenceKoch, C.A., Anderson, D.J., Moran, M.F., Ellis, C.A. & Pawson, T. 1991. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252, 668 – 674.en_US
dc.identifier.citedreferenceKurzer, J.H., Argetsinger, L.S., Zhou, Y.J., Kouadio, J.L., O’Shea, J.J. & Carter-Su, C. 2004. Tyrosine 813 is a site of JAK2 autophosphorylation critical for activation of JAK2 by SH2-B beta. Mol Cell Biol 24, 4557 – 4570.en_US
dc.identifier.citedreferenceLeshan, R.L., Bjornholm, M., Munzberg, H. & Myers, M.G., Jr. 2006. Leptin receptor signaling and action in the central nervous system. Obesity (Silver Spring) 14 ( Suppl. 5 ), 208S – 212S.en_US
dc.identifier.citedreferenceLi, C. & Friedman, J.M. 1999. Leptin receptor activation of SH2 domain containing protein tyrosine phosphatase 2 modulates Ob receptor signal transduction. Proc Natl Acad Sci USA 96, 9677 – 9682.en_US
dc.identifier.citedreferenceLord, G.M., Matarese, G., Howard, J.K., Baker, R.J., Bloom, S.R. & Lechler, R.I. 1998. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897 – 901.en_US
dc.identifier.citedreferenceMacNeil, D.J., Howard, A.D., Guan, X., Fong, T.M., Nargund, R.P., Bednarek, M.A., Goulet, M.T., Weinberg, D.H., Strack, A.M., Marsh, D.J. et al. 2002. The role of melanocortins in body weight regulation: opportunities for the treatment of obesity. Eur J Pharmacol 450, 93 – 109.en_US
dc.identifier.citedreferenceMarsh, D.J., Hollopeter, G., Huszar, D., Laufer, R., Yagaloff, K.A., Fisher, S.L., Burn, P. & Palmiter, R.D. 1999. Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat Genet 21, 119 – 122.en_US
dc.identifier.citedreferenceMatsuda, T., Feng, J., Witthuhn, B.A., Sekine, Y. & Ihle, J.N. 2004. Determination of the transphosphorylation sites of Jak2 kinase. Biochem Biophys Res Commun 325, 586 – 594.en_US
dc.identifier.citedreferenceMinokoshi, Y., Alquier, T., Furukawa, N., Kim, Y.B., Lee, A., Xue, B., Mu, J., Foufelle, F., Ferre, P., Birnbaum, M.J., Stuck, B.J. & Kahn, B.B. 2004. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569 – 574.en_US
dc.identifier.citedreferenceMontague, C.T., Farooqi, I.S., Whitehead, J.P., Soos, M.S., Rau, H., Wareham, N.J., Sewter, C.P., Digby, J.E., Mohammed, S.N., Hurst, J.A., Cheetham, C.H., Early, A.R., Barnett, A.H., Prins, J.B. & O’Rahilly, S. 1997. Congenital leptin deficiency is associated with severe early onset obesity in humans. Nature 387, 903 – 908.en_US
dc.identifier.citedreferenceMori, H., Hanada, R., Hanada, T., Aki, D., Mashima, R., Nishinakamura, H., Torisu, T., Chien, K.R., Yasukawa, H. & Yoshimura, A. 2004. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med 10, 739 – 743.en_US
dc.identifier.citedreferenceMorton, G.J., Niswender, K.D., Rhodes, C.J., Myers, M.G., Jr, Blevins, J.T., Baskin, D.G. & Schwartz, M.W. 2003. Arcuate nucleus-specific leptin receptor gene therapy attenuates the obesity phenotype of Koletsky (fak/fak) rats. Endocrinology 144, 2016 – 2024.en_US
dc.identifier.citedreferenceMorton, G.J., Blevins, J.E., Williams, D.L., Niswender, K.D., Gelling, R.W., Rhodes, C.J., Baskin, D.G. & Schwartz, M.W. 2005. Leptin action in the forebrain regulates the hindbrain response to satiety signals. J Clin Invest 115, 703 – 710.en_US
dc.identifier.citedreferenceMorton, G.J., Cummings, D.E., Baskin, D.G., Barsh, G.S. & Schwartz, M.W. 2006. Central nervous system control of food intake and body weight. Nature 443, 289 – 295.en_US
dc.identifier.citedreferenceMunzberg, H., Huo, L., Nillni, E.A., Hollenberg, A.N. & Bjorbaek, C. 2003. Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology 144, 2121 – 2131.en_US
dc.identifier.citedreferenceMunzberg, H., Jobst, E.E., Bates, S.H., Jones, J., Villanueva, E., Leshan, R., Bjornholm, M., Elmquist, J., Sleeman, M., Cowley, M.A. & Myers, M.G., Jr. 2007. Appropriate inhibition of orexigenic hypothalamic arcuate nucleus neurons independently of leptin receptor/STAT3 signaling. J Neurosci 27, 69 – 74.en_US
dc.identifier.citedreferenceNestler, E.J. 2005. Is there a common molecular pathway for addiction? Nat Neurosci 8, 1445 – 1449.en_US
dc.identifier.citedreferenceNiswender, K.D., Morton, G.J., Stearns, W.H., Rhodes, C.J., Myers, M.G., Jr & Schwartz, M.W. 2001. Intracellular signalling key enzyme in leptin-induced anorexia. Nature 413, 794 – 795.en_US
dc.identifier.citedreferenceOllmann, M.M., Wilson, B.D., Yang, Y.K., Kerns, J.A., Chen, Y., Gantz, I. & Barsh, G.S. 1997. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135 – 138.en_US
dc.identifier.citedreferencePinto, S., Roseberry, A.G., Liu, H., Diano, S., Shanabrough, M., Cai, X., Friedman, J.M. & Horvath, T.L. 2004. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304, 110 – 115.en_US
dc.identifier.citedreferencePlum, L., Ma, X., Hampel, B., Balthasar, N., Coppari, R., Munzberg, H., Shanabrough, M., Burdakov, D., Rother, E., Janoschek, R. et al. 2006. Enhanced PIP(3) signaling in POMC neurons causes K(ATP) channel activation and leads to diet-sensitive obesity. J Clin Invest 116, 1886 – 1901.en_US
dc.identifier.citedreferenceQu, D., Ludwig, D.S., Gammeltoft, S., Piper, M., Pelleymounter, M.A., Cullen, M.J., Mathes, W.F., Przypek, J., Kanarek, R. & Maratos-Flier, E. 1996. A role for melanin-concentrating hormone in the central regulation of feeding behavior. Nature 380, 243 – 247.en_US
dc.identifier.citedreferenceSasaki, A., Yasukawa, H., Shouda, T., Kitamura, T., Dikic, I. & Yoshimura, A. 2000. CIS3/SOCS3 suppresses erythropoietin signaling by binding the EPO receptor and JAK2. J Biol Chem 275, 29338 – 29347.en_US
dc.identifier.citedreferenceSmith, M.A., Hisadome, K., Al Qassab, H., Heffron, H., Withers, D.J. & Ashford, M.L. 2007. Melanocortins and agouti-related protein modulate the excitability of two arcuate nucleus neuron populations by alteration of resting potassium conductances. J Physiol 578 ( Pt 2 ), 425 – 438.en_US
dc.identifier.citedreferenceSongyang, Z., Shoelson, S.E., Chaudhuri, M., Gish, G.D., Pawson, T., Haser, W.G., King, F., Roberts, T., Ratnofsky, S., Lechleider, R.J. et al. 1993. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767 – 778.en_US
dc.identifier.citedreferenceSte, M.L., Miura, G.I., Marsh, D.J., Yagaloff, K. & Palmiter, R.D. 2000. A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc Natl Acad Sci USA 97, 12339 – 12344.en_US
dc.identifier.citedreferenceSternson, S.M., Shepherd, G.M. & Friedman, J.M. 2005. Topographic mapping of VMH → arcuate nucleus microcircuits and their reorganization by fasting. Nat Neurosci 8, 1356 – 1363.en_US
dc.identifier.citedreferenceTaga, T. & Kishimoto, T. 1997. gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol 15, 797 – 819.en_US
dc.identifier.citedreferenceTaniguchi, T. 1995. Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268, 251 – 255.en_US
dc.identifier.citedreferenceTartaglia, L.A. 1997. The leptin receptor. J Biol Chem 272, 6093 – 6096.en_US
dc.identifier.citedreferenceWhite, D.W., Kuropatwinski, K.K., Devos, R., Baumann, H. & Tartaglia, L.A. 1997. Leptin receptor (OB-R) signaling. J Biol Chem 272, 4065 – 4071.en_US
dc.identifier.citedreferenceWilliams, D.L., Baskin, D.G. & Schwartz, M.W. 2006. Leptin regulation of the anorexic response to glucagon-like peptide-1 receptor stimulation. Diabetes 55, 3387 – 3393.en_US
dc.identifier.citedreferenceXu, A.W., Kaelin, C.B., Takeda, K., Akira, S., Schwartz, M.W. & Barsh, G.S. 2005. PI3K integrates the action of insulin and leptin on hypothalamic neurons. J Clin Invest 115, 951 – 958.en_US
dc.identifier.citedreferenceXu, A.W., Ste-Marie, L., Kaelin, C.B. & Barsh, G.S. 2006. Inactivation of Stat3 in Pomc neurons causes decreased Pomc expression, mild obesity and defects in compensatory refeeding. Endocrinology 148, 72 – 80.en_US
dc.identifier.citedreferenceYamanaka, A., Beuckmann, C.T., Willie, J.T., Hara, J., Tsujino, N., Mieda, M., Tominaga, M., Yagami, K., Sugiyama, F., Goto, K., Yanagisawa, M. & Sakurai, T. 2003. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38, 701 – 713.en_US
dc.identifier.citedreferenceZhang, E.E., Chapeau, E., Hagihara, K. & Feng, G.S. 2004. Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. Proc Natl Acad Sci USA 101, 16064 – 16069.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.