Show simple item record

Predictive base substitution rules that determine the binding and transcriptional specificity of Maf recognition elements

dc.contributor.authorYamamoto, Taeen_US
dc.contributor.authorKyo, Motokien_US
dc.contributor.authorKamiya, Terueen_US
dc.contributor.authorTanaka, Toshiyukien_US
dc.contributor.authorEngel, James Douglasen_US
dc.contributor.authorMotohashi, Hozumien_US
dc.contributor.authorYamamoto, Masayukien_US
dc.date.accessioned2010-06-01T18:25:40Z
dc.date.available2010-06-01T18:25:40Z
dc.date.issued2006-06en_US
dc.identifier.citationYamamoto, Tae; Kyo, Motoki; Kamiya, Terue; Tanaka, Toshiyuki; Engel, James Douglas; Motohashi, Hozumi; Yamamoto, Masayuki (2006). "Predictive base substitution rules that determine the binding and transcriptional specificity of Maf recognition elements." Genes to Cells 11(6): 575-591. <http://hdl.handle.net/2027.42/71635>en_US
dc.identifier.issn1356-9597en_US
dc.identifier.issn1365-2443en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71635
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16716189&dopt=citationen_US
dc.format.extent1246886 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rightsJournal compilation © 2006 by the Molecular Biology Society of Japan/Blackwell Publishing Ltden_US
dc.titlePredictive base substitution rules that determine the binding and transcriptional specificity of Maf recognition elementsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-0616, USAen_US
dc.contributor.affiliationotherGraduate School of Comprehensive Human Sciences and Center for Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8577, Japanen_US
dc.contributor.affiliationotherTOYOBO Co. Ltd. Biotechnology Frontier Project, 10-24 Toyo-Cho, Tsuruga, Fukui 914-0047, Japanen_US
dc.contributor.affiliationotherGraduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8572, Japanen_US
dc.contributor.affiliationotherERATO Environmental Response Project, Japan Science and Technology Corporation, 1-1-1 Tennoudai, Tsukuba 305-8577, Japanen_US
dc.identifier.pmid16716189en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71635/1/j.1365-2443.2006.00965.x.pdf
dc.identifier.doi10.1111/j.1365-2443.2006.00965.xen_US
dc.identifier.sourceGenes to Cellsen_US
dc.identifier.citedreferenceAlam, J., Wicks, C., Stewart, D., et al. ( 2000 ) Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. Role of p38 kinase and Nrf2 transcription factor. J. Biol. Chem. 275, 27694 – 27702.en_US
dc.identifier.citedreferenceAndrews, N.C., Erdjument-Bromage, H., Davidson, M.B., Tempst, P. & Orkin, S.H. ( 1993 ) Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 362, 722 – 728.en_US
dc.identifier.citedreferenceChapman-Smith, A., Lutwyche, J.K. & Whitelaw, M.L. ( 2004 ) Contribution of the Per/Arnt/Sim (PAS) domains to DNA binding by the basic helix-loop-helix PAS transcriptional regulators. J. Biol. Chem. 279, 5353 – 5362.en_US
dc.identifier.citedreferenceDeveaux, S., Cohen-Kaminsky, S., Shivdasani, R.A., et al. ( 1997 ) p45 NF-E2 regulates expression of thromboxane synthase in megakaryocytes. EMBO J. 16, 5654 – 5661.en_US
dc.identifier.citedreferenceFriling, R.S., Bensimon, A., Tichauer, Y. & Daniel, V. ( 1990 ) Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element. Proc. Natl. Acad. Sci. USA 87, 6258 – 6262.en_US
dc.identifier.citedreferenceGeorge, A.J., French, R.R. & Glennie, M.J. ( 1995 ) Measurement of kinetic binding constants of a panel of anti-saporin antibodies using a resonant mirror biosensor. J. Immunol. Methods 183, 51 – 63.en_US
dc.identifier.citedreferenceGrinberg, A.V. & Kerppola, T. ( 2003 ) Both Max and TFE3 cooperate with Smad proteins to bind the plasminogen activator inhibitor-1 promoter, but they have opposite effects on transcriptional activity. J. Biol. Chem. 278, 11227 – 11236.en_US
dc.identifier.citedreferenceHuang, W., Lu, N., Eberspaecher, H. & De Crombrugghe, B. ( 2002 ) A new long form of c-Maf cooperates with Sox9 to activate the type II collagen gene. J. Biol. Chem. 277, 50668 – 50675.en_US
dc.identifier.citedreferenceIgarashi, K., Kataoka, K., Itoh, K., Hayashi, N., Nishizawa, M. & Yamamoto, M. ( 1994 ) Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins. Nature 367, 568 – 572.en_US
dc.identifier.citedreferenceItoh, K., Chiba, T., Takahashi, S., et al. ( 1997 ) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313 – 322.en_US
dc.identifier.citedreferenceItoh, K., Wakabayashi, N., Katoh, Y., et al. ( 1999 ) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13, 76 – 86.en_US
dc.identifier.citedreferenceJochum, W., Passegue, E. & Wagner, E.F. ( 2001 ) AP-1 in mouse development and tumorigenesis. Oncogene 20, 2401 – 2412.en_US
dc.identifier.citedreferenceJohnsen, O., Murphy, P., Prydz, H. & Kolsto, A.B. ( 1998 ) Interaction of the CNC-bZIP factor TCF11/LCR-F1/Nrf1 with MafG: binding-site selection and regulation of transcription. Nucleic Acids Res. 26, 512 – 520.en_US
dc.identifier.citedreferenceKataoka, K., Han, S.I., Shioda, S., Hirai, M., Nishizawa, M. & Handa, H. ( 2002 ) MafA is a glucose-regulated and pancreatic beta-cell-specific transcriptional activator for the insulin gene. J. Biol. Chem. 277, 49903 – 49910.en_US
dc.identifier.citedreferenceKataoka, K., Igarashi, K., Itoh, K., et al. ( 1995 ) Small Maf proteins heterodimerize with Fos and potentially act as competitive repressors of NF-E2 transcription factor. Mol. Cell. Biol. 152, 180 – 2190.en_US
dc.identifier.citedreferenceKataoka, K., Noda, M. & Nishizawa, M. ( 1994 ) Maf nuclear oncoprotein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun. Mol. Cell. Biol. 14, 700 – 712.en_US
dc.identifier.citedreferenceKerppola, T.K. & Curran, T. ( 1994 ) A conserved region adjacent to the basic domain is required for recognition of an extended DNA binding site by Maf/Nrl family proteins. Oncogene 9, 3149 – 3158.en_US
dc.identifier.citedreferenceKlok, E.J., van Genesen, S.T., Civil, A., Schoenmakers, J.G. & Lubsen, N.H. ( 1998 ) Regulation of expression within a gene family. The case of the rat gammaB- and gammaD-crystallin promoters. J. Biol. Chem. 273, 17206 – 17215.en_US
dc.identifier.citedreferenceKumar, R., Chen, S., Scheurer, D., et al. ( 1996 ) The bZIP transcription factor Nrl stimulates rhodopsin promoter activity in primary retinal cell cultures. J. Biol. Chem. 271, 29612 – 29618.en_US
dc.identifier.citedreferenceKusunoki, H., Motohashi, H., Katsuoka, F., Morohashi, A., Yamamoto, M. & Tanaka, T. ( 2002 ) Solution structure of the DNA-binding domain of MafG. Nat. Struct. Biol. 9, 252 – 256.en_US
dc.identifier.citedreferenceKyo, M., Yamamoto, T., Motohashi, H., et al. ( 2004 ) Evaluation of MafG interaction with Maf recognition element arrays by surface plasmon resonance imaging technique. Genes Cells 9, 153 – 164.en_US
dc.identifier.citedreferenceLeung, L., Kwong, M., Hou, S., Lee, C. & Chan, J.Y. ( 2003 ) Deficiency of the Nrf1 and Nrf2 transcription factors results in early embryonic lethality and severe oxidative stress. J. Biol. Chem. 278, 48021 – 48029.en_US
dc.identifier.citedreferenceMignotte, V., Wall, L., deBoer, E., Grosveld, F. & Romeo, P.H. ( 1989 ) Two tissue-specific factors bind the erythroid promoter of the human porphobilinogen deaminase gene. Nucleic Acids Res. 17, 37 – 54.en_US
dc.identifier.citedreferenceMoinova, H.R. & Mulcahy, R.T. ( 1998 ) An electrophile responsive element (EpRE) regulates beta-naphthoflavone induction of the human gamma-glutamylcysteine synthetase regulatory subunit gene. Constitutive expression is mediated by an adjacent AP-1 site. J. Biol. Chem. 273, 14683 – 14689.en_US
dc.identifier.citedreferenceMoon, A.M. & Ley, T.J. ( 1990 ) Conservation of the primary structure, organization, and function of the human and mouse β-globin locus-activating regions. Proc. Natl. Acad. Sci. USA 87, 7693 – 7697.en_US
dc.identifier.citedreferenceMotohashi, H., Igarashi, K., Onodera, K., et al. ( 1996 ) Mesodermal- vs. neuronal-specific expression of MafK is elicited by different promoters. Genes Cells 1, 223 – 238.en_US
dc.identifier.citedreferenceMotohashi, H., Katsuoka, F., Shavit, J., Engel, J.D. & Yamamoto, M. ( 2000 ) Positive or negative MARE-dependent transcriptional regulation is determined by the abundance of small Maf proteins. Cell 103, 65 – 875.en_US
dc.identifier.citedreferenceMotohashi, H., O’Connor, T., Katsuoka, F., Engel, D.J. & Yamamoto, M. ( 2002 ) Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294, 1 – 12.en_US
dc.identifier.citedreferenceMulcahy, R.T., Wartman, M.A., Bailey, H.H. & Gipp, J.J. ( 1997 ) Constitutive and beta-naphthoflavone-induced expression of the human gamma-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. J. Biol. Chem. 272, 7445 – 7454.en_US
dc.identifier.citedreferenceNagai, T., Igarashi, K., Akasaka, J., et al. ( 1998 ) Regulation of NF-E2 activity in erythroleukemia cell differentiation. J. Biol. Chem. 273, 5358 – 5365.en_US
dc.identifier.citedreferenceNewman, J.R. & Keating, A.E. ( 2003 ) Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science 300, 2097 – 2101.en_US
dc.identifier.citedreferenceNey, P.A., Sorrentino, B.P., Lowrey, C.H. & Nienhuis, A.W. ( 1990 ) Inducibility of the HS II enhancer depends on binding of an erythroid specific nuclear protein. Nucleic Acids Res. 18, 6011 – 6017.en_US
dc.identifier.citedreferenceNioi, P., McMahon, M., Itoh, K., Yamamoto, M. & Hayes, J.D. ( 2003 ) Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence. Biochem. J. 374, 337 – 348.en_US
dc.identifier.citedreferenceOgino, H. & Yasuda, K. ( 1998 ) Induction of lens differentiation by activation of a bZIP transcription factor, L-Maf. Science 280, 115 – 118.en_US
dc.identifier.citedreferenceOkazaki, M., Ito, S., Kawakita, K., et al. ( 1999 ) Cloning, expression profile, and genomic organization of the mouse STAP/A170 gene. Genomics 60, 87 – 95.en_US
dc.identifier.citedreferencePark, S., Chung, S., Kim, K.M., et al. ( 2004 ) Determination of binding constant of transcription factor myc-max/max-max and E-box DNA: the effect of inhibitors on the binding. Biochim. Biophys. Acta 1670, 217 – 228.en_US
dc.identifier.citedreferenceRajaram, N. & Kerppola, T.K. ( 2004 ) Synergistic transcription activation by Maf and Sox and their subnuclear localization are disrupted by a mutation in Maf that causes cataract. Mol. Cell. Biol. 24, 5694 – 5709.en_US
dc.identifier.citedreferenceRamirez-Carrozzi, V. & Kerppola, T. ( 2003 ) Asymmetric recognition of nonconsensus AP-1 sites by Fos-Jun and Jun-Jun influences transcriptional cooperativity with NFAT1. Mol. Cell. Biol. 23, 1737 – 1749.en_US
dc.identifier.citedreferenceRushmore, T.H., Morton, M.R. & Pickett, C.B. ( 1991 ) The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J. Biol. Chem. 266, 11632 – 11639.en_US
dc.identifier.citedreferenceSakai, M., Okuda, A. & Muramatsu, M. ( 1988 ) Multiple regulatory elements and phorbol 12-O-tetradecanoate 13-acetate responsiveness of the rat placental glutathione transferase gene. Proc. Natl. Acad. Sci. USA 85, 9456 – 9460.en_US
dc.identifier.citedreferenceSharon-Friling, R., Richardson, J., Sperbeck, S., et al. ( 1998 ) Lens-specific gene recruitment of zeta-crystallin through Pax6, Nrl-Maf, and brain suppressor sites. Mol. Cell. Biol. 18, 2067 – 2676.en_US
dc.identifier.citedreferenceStamatoyannopoulos, J.A., Goodwin, A., Joyce, T. & Lowrey, C.H. ( 1995 ) NF-E2 and GATA binding motifs are required for the formation of DNase I hypersensitive site 4 of the human beta-globin locus control region. EMBO J. 14, 106 – 116.en_US
dc.identifier.citedreferenceSwaroop, A., Xu, J., Pawer, H., Jackson, A., Skolnick, C. & Agarwal, N. ( 1992 ) A conserved retina-specific gene encodes a basic motif/leucine zipper protein. Proc. Natl. Acad. Sci. USA 89, 266 – 270.en_US
dc.identifier.citedreferenceVinson, C., Myakishev, M., Acharya, A., Mir, A.A., Moll, J.R. & Bonovich, M. ( 2002 ) Classification of human B-ZIP proteins based on dimerization properties. Mol. Cell. Biol. 22, 6321 – 6335.en_US
dc.identifier.citedreferenceXie, T., Belinsky, M., Xu, Y. & Jaiswal, A.K. ( 1995 ) ARE- and TRE-mediated regulation of gene expression. Response to xenobiotics and antioxidants. J. Biol. Chem. 270, 6894 – 6900.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.