Show simple item record

Nutrient Content and Substrate Effect on Fine Root Density and Size Distribution in a Nicaraguan Rain Forest 1

dc.contributor.authorBlair, Brent C.en_US
dc.contributor.authorPerfecto, lvetteen_US
dc.date.accessioned2010-06-01T18:30:01Z
dc.date.available2010-06-01T18:30:01Z
dc.date.issued2001-12en_US
dc.identifier.citationBlair, Brent C.; Perfecto, lvette (2001). "Nutrient Content and Substrate Effect on Fine Root Density and Size Distribution in a Nicaraguan Rain Forest 1 ." Biotropica 33(4): 697-701. <http://hdl.handle.net/2027.42/71707>en_US
dc.identifier.issn0006-3606en_US
dc.identifier.issn1744-7429en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71707
dc.format.extent410729 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2001 The Association for Tropical Biology and Conservation Inc.en_US
dc.subject.otherKey Wordsen_US
dc.subject.otherNicaraguaen_US
dc.subject.otherNutrient Foragingen_US
dc.subject.otherNutrient Heterogeneityen_US
dc.subject.otherRoot Ingrowth Coreen_US
dc.subject.otherTropical Wet Foresten_US
dc.titleNutrient Content and Substrate Effect on Fine Root Density and Size Distribution in a Nicaraguan Rain Forest 1en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources and Environment University of Michigan Dana Building, 430 E. University Ann Arbor, Michigan 48109-1115, U.S.A.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71707/1/j.1744-7429.2001.tb00227.x.pdf
dc.identifier.doi10.1111/j.1744-7429.2001.tb00227.xen_US
dc.identifier.sourceBiotropicaen_US
dc.identifier.citedreferenceBrÆ;kke, F.. 1992. Root biomass changes after drainage and fertilization of a low-shrub pine bog. Plant Soil 143: 33 – 43.en_US
dc.identifier.citedreferenceCain, M.. 1994. Consequences of foraging in clonal plant species. Ecology 75: 933 – 944.en_US
dc.identifier.citedreferenceCaldwell, M.. 1994. Exploiting nutrients in fertile soil microsites. In M. Caldwell and R. Pearcy ( Eds. ). Exploitation of environmental heterogeneity in plants, pp. 325 – 347. Academic Press, San Diego, California.en_US
dc.identifier.citedreferenceCaldwell, M. and J. Richards. 1983. Competing root systems: morphology and models of absorption. In T. Givnish ( Ed. ). On the economy of plant form and function, pp. 251 – 273. Cambridge University Press, New York.en_US
dc.identifier.citedreferenceCurves, E., and E. Medina. 1988. Nutrient dynamics within Amazonian forests II: fine root growth, nutrient availability and leaf litter decomposition. Oecologi. 76: 222 – 235.en_US
dc.identifier.citedreferenceEinsmann, J., R. Jones, M. Pu, and R. Mitchell. 1999. Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms. J. Ecol. 87: 609 – 619.en_US
dc.identifier.citedreferenceGonzalez, O., and D. Zak. 1994. Geostatistical analysis of soil properties in a secondary tropical dry forest, St. Lucia, West Indies. Plant Soil 163: 45 – 54.en_US
dc.identifier.citedreferenceGross, K., A. Peters, and K. Pregitzer. 1993. Fine root growth and demographic responses to nutrient patches in four old field plant species. Oecologia 95: 61 – 64 and.en_US
dc.identifier.citedreferenceK. Pregitzer. 1995. Spatial variation in nitrogen availability in three successional plant communities. J. Ecol. 83: 357 – 367.en_US
dc.identifier.citedreferenceGupta, P., and I. Rorison. 1975. Seasonal differences in the availability of nutrients down a podzolic profile. J. Ecol. 63: 521 – 534.en_US
dc.identifier.citedreferenceHall, J.. 1970. Pattern in a chalk grassland community. J. Ecol. 59: 749 – 762.en_US
dc.identifier.citedreferenceHuante, P., E. Rincon, and F. Chapin. 1998. Effect of changing light availability on nutrient foraging in tropical deciduous tree-seedlings. Oiko. 82: 449 – 458.en_US
dc.identifier.citedreferenceHutchings, M.. 1988. Differential foraging for resources and structural plasticity in plants. Trends Ecol. Evol. 3: 200 – 204.en_US
dc.identifier.citedreferenceJackson, R., and M. Caldwell. 1992. The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics. Ecology 74: 612 – 614.en_US
dc.identifier.citedreferenceLund, Z., R. Pearson, and G. Buchanan. 1970. An implanted soil mass technique to study herbicide effects on root growth. Weed Sci. 18: 279 – 281.en_US
dc.identifier.citedreferenceNewman, E.. 1966. A method of estimating the total length of root in a sample. J. Appl. Ecol. 3: 139 – 145.en_US
dc.identifier.citedreferenceNye, P., and P. Tinker. 1977. Solute movement in the soil-root system. University of California Press, Berkeley, California.en_US
dc.identifier.citedreferenceOlsen, S., and L. Sommers. 1982. Phosphorus. In A. Page, R. Miller, and D. Keeney ( Eds. ). Methods of soil analysis, part 2. Chemical and microbiological properties, 2nd edition, pp. 403 – 430. American Society of Agronomy, Madison, Wisconsin.en_US
dc.identifier.citedreferenceOstertag, R.. 1998. Belowground effects of canopy gaps in a tropical wet forest. Ecology 79: 1294 – 1304.en_US
dc.identifier.citedreferencePregitzer, K., R. Hendrick, and R. Fogel. 1993. The demography of fine roots in response to patches of water and nitrogen. New Phytol. 125: 575 – 580.en_US
dc.identifier.citedreferenceD. Zak, P. Curtis, M. Kubiske, J. Teeri, and C. Vogel. 1995. Atmospheric CO 2 soil nitrogen and turnover of fine roots. New Phytol. 129: 579 – 85.en_US
dc.identifier.citedreferenceRaich, J., R. Riley and P. Vitousek. 1994. Use of root-ingrowth cores to assess nutrient limitations in forest ecosystems. Can. J. For. Res. 24: 2135 – 2138.en_US
dc.identifier.citedreferenceRobinson, D.. 1994. Tansley review no. 73: The responses of plants to non-uniform supplies of nutrients. New Phytol. 127: 635 – 674.en_US
dc.identifier.citedreferenceRyle, R., M. Caldwell, and J. Manwaring. 1996. Temporal dynamics of soil spatial heterogeneity in sagebrush-wheat grass steppe during a growing season. Plant Soil 184: 299 – 309.en_US
dc.identifier.citedreferenceSteen, E.. 1991. Usefulness of the mesh bag method in quantitative root studies. In D. Atkinson ( Ed. ). Plant root growth: an ecological perspective, pp. 75 – 86. Blackwell Scientific, Oxford, England.en_US
dc.identifier.citedreferenceSoil Survey Staff. 1993. Soil survey manual, United States Department of Agriculture, handbook no. 18. U.S. Government Printing Office, Washington, D.C.en_US
dc.identifier.citedreferenceSt. John, T. 1983. Response of tree roots to decomposing organic matter in two lowland Amazonian rain forests. Can. J. For. Res. 13: 346 – 349.en_US
dc.identifier.citedreferenceTan, K.. 1996. Soil sampling, preparation, and analysis. Marcel Dekker, New York, New York.en_US
dc.identifier.citedreferenceTennant, D.. 1975. A test of a modified line intersect method of estimating root length. J. Ecol. 63: 995 – 1001.en_US
dc.identifier.citedreferenceVandermeer, J., I. Granzow De la Cerda, D. Boucher, I. Perfecto, and J. Ruiz. 2000. Hurricane disturbance and tropical tree species diversity. Scienc. 290: 788 – 791.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.