Show simple item record

Experimental and model analyses of the effects of competition on individual size variation in wood frog ( Rana sylvatica ) tadpoles

dc.contributor.authorPeacor, Scott D.en_US
dc.contributor.authorPfister, Catherine A.en_US
dc.date.accessioned2010-06-01T18:31:30Z
dc.date.available2010-06-01T18:31:30Z
dc.date.issued2006-07en_US
dc.identifier.citationPEACOR, SCOTT D.; PFISTER, CATHERINE A. (2006). "Experimental and model analyses of the effects of competition on individual size variation in wood frog ( Rana sylvatica ) tadpoles." Journal of Animal Ecology 75(4): 990-999. <http://hdl.handle.net/2027.42/71731>en_US
dc.identifier.issn0021-8790en_US
dc.identifier.issn1365-2656en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71731
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17009762&dopt=citationen_US
dc.description.abstract1.   Size variation is a ubiquitous feature of animal populations and is predicted to strongly influence species abundance and dynamics; however, the factors that determine size variation are not well understood. 2.   In a mesocosm experiment, we found that the relationship between mean and variation in wood frog ( Rana sylvatica ) tadpole size is qualitatively different at different levels of competition created by manipulating resource supply rates or tadpole density. At low competition, relative size variation (as measured by the coefficient of variation) decreased as a function of mean size, while at high competition, relative size variation increased. Therefore, increased competition magnified differences in individual performance as measured by growth rate. 3.   A model was developed to estimate the contribution of size-dependent factors (i.e. based on size alone) and size-independent factors (i.e. resulting from persistent inherent phenotypic differences other than size that affect growth) on the empirical patterns. 4.   Model analysis of the low competition treatment indicated that size-dependent factors alone can describe the relationship between mean size and size variation. To fit the data, the size scaling exponent that describes the dependence of growth rate on size was determined. The estimated value, 0·83, is in the range of that derived from physiological studies. 5.   At high competition, the model analysis indicated that individual differences in foraging ability, either size-based or due to inherent phenotypic differences (size-independent factors), were much more pronounced than at low competition. The model was used to quantify the changes in size-dependent or size-independent factors that underlie the effect of competition on size-variation. In contrast to results at low competition, parameters derived from physiological studies could not be used to describe the observed relationships. 6.   Our experimental and model results elucidate the role of size-dependent and size-independent factors in the development of size variation, and highlight and quantify the context dependence of individual (intrapopulation) differences in competitive abilities. Journal of Animal Ecology (2006) 75 , 990 –999 doi: 10.1111/j.1365-2656.2006.01119.xen_US
dc.format.extent468139 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2006 British Ecological Societyen_US
dc.subject.otherDensity Dependenceen_US
dc.subject.otherIndividual Variationen_US
dc.subject.otherSize-variationen_US
dc.subject.otherGrowth Depensationen_US
dc.subject.otherGrowth Autocorrelationen_US
dc.titleExperimental and model analyses of the effects of competition on individual size variation in wood frog ( Rana sylvatica ) tadpolesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824 and Great Lakes Environmental, Research Laboratory (NOAA), 2205 Commonwealth Blvd, Ann Arbor, MI 48105, USA; anden_US
dc.contributor.affiliationother† Department of Ecology and Evolution, 1101 E. 57th Street, University of Chicago, Chicago, IL 60637, USAen_US
dc.identifier.pmid17009762en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71731/1/j.1365-2656.2006.01119.x.pdf
dc.identifier.doi10.1111/j.1365-2656.2006.01119.xen_US
dc.identifier.sourceJournal of Animal Ecologyen_US
dc.identifier.citedreferenceAgrawal, A.A. ( 2003 ) Community genetics: new insights into community ecology by integrating population genetics. Ecology, 84, 543 – 544.en_US
dc.identifier.citedreferenceArnold, S.J. ( 1981 ) Behavioural variation in natural populations: 2. The inheritance of a feeding response in crosses between geographic races of the garter snake, Thamnophis elegans. Evolution, 35, 510 – 515.en_US
dc.identifier.citedreferenceBolnick, D.I., SvanbÄck, R., Fordyce, J.A., Yang, L.H., Davis, J.M., Hulsey, C.D. & Forister, M.L. ( 2003 ) The ecology of individuals: incidence and implications of individual specialization. American Naturalist, 161, 1 – 28.en_US
dc.identifier.citedreferenceBrown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B. ( 2004 ) Toward a metabolic theory of ecology. Ecology, 85, 1771 – 1789.en_US
dc.identifier.citedreferenceCaswell, H. ( 2001 ) Matrix Population Models, 2nd edn. Sinauer, Sunderland, MA, USA.en_US
dc.identifier.citedreferenceColeman, K. & Wilson, D.S. ( 1997 ) Ecological and behavioural determinants of home range in juvenile pumpkinseed sunfish ( Lepomis gibbosus ) Ethology, 102, 900 – 914.en_US
dc.identifier.citedreferenceConnell, J.H. ( 1961 ) The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology, 42, 710 – 723.en_US
dc.identifier.citedreferenceConner, M.M. & White, G.C. ( 1999 ) Effects of individual heterogeneity in estimating the persistence of small populations. Natural Resource Modeling, 12, 109 – 127.en_US
dc.identifier.citedreferenceConover, D.O. & Munch, S.B. ( 2002 ) Sustaining fisheries yields over evolutionary time scales. Science, 297, 94 – 96.en_US
dc.identifier.citedreferenceDeAngelis, D.L. & Mooij, W.M. ( 2005 ) Individually-based modeling of ecological and evolutionary processes. Annual Review of Ecology, Evolution, and Systematics, 36, 147 – 168.en_US
dc.identifier.citedreferenceDeAngelis, D.L., Rose, K.A., Crowder, L.B., Marschall, E.A. & Lika, D. ( 1993 ) Fish cohort dynamics − application of complementary modeling approaches. American Naturalist, 142, 604 – 622.en_US
dc.identifier.citedreferenceDukas, R. & Bernays, E.A. ( 2000 ) Learning improves growth rate in grasshoppers. Proceedings of the National Academy of Sciences USA, 97, 2637 – 2640.en_US
dc.identifier.citedreferenceEbenmann, B. & Persson, L. ( 1988 ) Interactions in Size-Structured Populations: from Individual Behaviour to Ecosystem Dynamics. Springer-Verlag, Berlin.en_US
dc.identifier.citedreferenceFuiman, L.A. & Cowan, J.H. Jr ( 2003 ) Behaviour and recruitment success in fish larvae: repeatability and covariation of survival skills. Ecology, 84, 53 – 67.en_US
dc.identifier.citedreferenceFujiwara, M., Kendall, B.E. & Nisbet, R.N. ( 2004 ) Growth autocorrelation and animal size variation. Ecology Letters, 7, 106 – 113.en_US
dc.identifier.citedreferenceGosner, K.L. ( 1960 ) A simplified table for staging anuran embryos and larvae, with notes on identification. Herpetologica, 16, 183 – 190.en_US
dc.identifier.citedreferenceGrimm, V. & Railsback, S.F. ( 2005 ) Individual-Based Modeling and Ecology. Princeton University Press, Princeton, NJ.en_US
dc.identifier.citedreferenceGrimm, V. & Uchmanski, J. ( 2002 ) Individual variability and population regulation: a model of the significance of within-generation density dependence. Oecologia, 131, 196 – 202.en_US
dc.identifier.citedreferenceHassell, M.P. & May, R.M. ( 1985 ) From individual behaviour to population dynamics. Behavioural Ecology: Ecological Conse-Quences of Adaptive Behaviour (eds R. M. Sibly & R. H. Smith ), pp. 3 – 32. Blackwell, Oxford.en_US
dc.identifier.citedreferenceHewett. S.W. & Johnson, B.L. ( 1995 ) Fish Bioenergetics Model 3. University of Wisconsin Sea Grant Institute Report WIS-SG-91–250. Sea Grant Institute, Madison, Wisconsin, USA.en_US
dc.identifier.citedreferenceImsland, A.K., Nilsen, T. & Folkvord, A. ( 1998 ) Stochastic simulation of size variation in turbot: possible causes analysed with an individual-based model. Journal of Fish Biology, 53, 237 – 258.en_US
dc.identifier.citedreferenceKendall, B.E. & Fox, G.A. ( 2002 ) Variation among individuals and reduced demographic stochasticity. Conservation Biology, 16, 109 – 116.en_US
dc.identifier.citedreferenceKokko, H., Mackenzie, A., Reynolds, J.D., LindstrÖm, J. & Sutherland, W.J. ( 1999 ) Measures of inequality are not equal. American Naturalist, 154, 358 – 382.en_US
dc.identifier.citedreferenceKooijman, S.A.L.M. ( 2000 ) Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceLefkovitch, L.P. ( 1965 ) The study of population growth in organisms grouped by states. Biometrics, 1965, 1 – 18.en_US
dc.identifier.citedreferenceLomnicki, A. ( 1988 ) Population Ecology of Individuals. Princeton University Press, Princeton, NJ.en_US
dc.identifier.citedreferenceLudsin, S.A. & DeVries, D.R. ( 1997 ) First-year recruitment of largemouth bass: the interdependency of early life stages. Ecological Applications, 7, 1024 – 1038.en_US
dc.identifier.citedreferenceMagnuson, J.J. ( 1962 ) An analysis of aggressive behaviour, growth, and competition for food and space in medaka ( Oryzias latipes (Pisces, Cyprinodontidae). Canadian Journal of Zoology, 40, 313 – 363.en_US
dc.identifier.citedreferenceMaret, T.J. & Collins, J.P. ( 1994 ) Individual responses to population size structure: the role of size variation in controlling expression of a trophic polyphenism. Oecologia, 100, 279 – 285.en_US
dc.identifier.citedreferenceNeter, J., Wasserman, W. & Kutner, M.H. ( 1985 ) Applied Linear Statistical Models, 2nd, pp. 725 – 731. Richard D. Irwin, Burr Ridge, IL.en_US
dc.identifier.citedreferencePalmer, A.R. ( 1984 ) Prey selection by thaidid gastropods: some observational and experimental field tests of foraging models. Oecologia, 88, 277 – 288.en_US
dc.identifier.citedreferencePeacor, S.D. & Werner, E.E. ( 2004 ) Context dependence of non-lethal predator effects on prey growth. Israel Journal of Zoology, 50, 139 – 167.en_US
dc.identifier.citedreferencePfister, C.A. & Peacor, S.D. ( 2003 ) Variable performance of individuals: the role of population density and endogenously formed landscape heterogeneity. Journal of Animal Ecology, 72, 725 – 235.en_US
dc.identifier.citedreferencePfister, C.A. & Stevens, F.R. ( 2002 ) The genesis of size variability in plants and animals. Ecology, 83, 59 – 72.en_US
dc.identifier.citedreferencePfister, C.A. & Stevens, F.R. ( 2003 ) Individual variation and environmental stochasticity: implications for matrix model predictions. Ecology, 84, 496 – 510.en_US
dc.identifier.citedreferenceRice, J.A., Miller, T.J., Rose, K.A., Crowder, L.B., Marschall, E.A., Trebitz, A. & DeAngelis, D.L. ( 1993 ) Growth rate variation and larval survival: inferences from an individual-based size-dependent predation model. Canadian Journal of Fish and Aquatic Science, 50, 133 – 142.en_US
dc.identifier.citedreferenceRicker, W.E. ( 1958 ) Handbook of computations for biological statistics of fish populations. Fisheries Research Board of Canada Bulletin Number 119.en_US
dc.identifier.citedreferenceRose, K.A., Rutherford, E.S., McDermot, D.S., Forney, J.L. & Mills, E.L. ( 1999 ) Individually-based model of yellow perch and walleye populations in Oneida Lake. Ecological Monographs, 69, 127 – 154.en_US
dc.identifier.citedreferenceRubenstein, D.I. ( 1981 ) Individual variation and competition in the everglades pygmy sunfish. Journal of Animal Ecology, 50, 337 – 350.en_US
dc.identifier.citedreferenceSchiesari, L.C. ( 2004 ) Performance tradeoffs across resource gradients in anuran larvae. PhD Dissertation, University of Michigan.en_US
dc.identifier.citedreferenceSebens, K.P. ( 1982 ) The limits to indeterminate growth − an optimal size model applied to passive suspension feeders. Ecology, 63, 209 – 222.en_US
dc.identifier.citedreferenceSebens, K.P. ( 1987 ) The ecology of indeterminate growth in animals. Annual Review of Ecology and Systematics, 18, 371 – 407.en_US
dc.identifier.citedreferenceSogard, S.M. & Olla, B.L. ( 2000 ) Effects of group membership and size distribution within a group on growth rates of juvenile sablefish Anoplopoma fimbria. Environmental Biology of Fishes, 59, 199 – 209.en_US
dc.identifier.citedreferenceSPSS, 12.0 for Windows, Rel. 12 0 0 ( 2003 ) Chicago, SPSS Inc.en_US
dc.identifier.citedreferenceUchmanski, J. ( 1985 ) Differentiation and frequency-distributions of body weights in plants and animals. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 310, 1 – 75.en_US
dc.identifier.citedreferenceUchmanski, J. ( 1999 ) What promotes persistence of a single population: an individually-based model. Ecological Modeling, 155, 227 – 241.en_US
dc.identifier.citedreferenceWall, R. & Begon, M. ( 1987 ) Population-density, phenotype and reproductive output in the grasshopper Chorthippus –Brunneus. Ecological Entomology, 12, 331 – 339.en_US
dc.identifier.citedreferenceWellborn, G.A., Skelly, D.K. & Werner, E.E. ( 1996 ) Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics, 27, 337 – 363.en_US
dc.identifier.citedreferenceWilbur, H.M. & Collins, V. ( 1973 ) Ecological aspects of amphibian metamorphosis. Science, 182, 1305 – 1314.en_US
dc.identifier.citedreferenceWilson, D.S. ( 1998 ) Adaptive individual differences within single populations. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 353, 199 – 205.en_US
dc.identifier.citedreferenceWootton, J.T. ( 1994 ) Putting the pieces together: testing the independence of interactions among organisms. Ecology, 75, 1544 – 1551.en_US
dc.identifier.citedreferenceWyszomirski, T., Wyszomirska, I. & Jarzyna, I. ( 1999 ) Simple mechanisms of size distribution dynamics in crowded and uncrowded virtual monocultures. Ecological Modelling, 115, 253 – 273.en_US
dc.identifier.citedreferenceYodzis, P. & Innes, S. ( 1992 ) Body size and consumer-resource dynamics. American Naturalist, 139, 1151 – 1175.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.