Show simple item record

Expulsion mechanism of xylitol 5-phosphate in Streptococcus mutans

dc.contributor.authorPihlanto-Leppälä, Anneen_US
dc.contributor.authorSöderling, Evaen_US
dc.contributor.authorMakinen, Kauko K.en_US
dc.date.accessioned2010-06-01T18:34:17Z
dc.date.available2010-06-01T18:34:17Z
dc.date.issued1990-04en_US
dc.identifier.citationPIHLANTO-LEPPÄLÄ, ANNE; SÖDERLING, EVA; MÄKINEN, KAUKO K. (1990). "Expulsion mechanism of xylitol 5-phosphate in Streptococcus mutans." European Journal of Oral Sciences 98(2): 112-119. <http://hdl.handle.net/2027.42/71776>en_US
dc.identifier.issn0909-8836en_US
dc.identifier.issn1600-0722en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71776
dc.description.abstractThe expulsion mechanism of xylitol 5-phosphate in Streptococcus mutans ATCC 25175 was studied using resting cells incubated in the presence of 14 C-xylitol. The expulsion appeared to be a two-step process: xylitol 5-phosphate was first hydrolyzed to xylitol and inorganic phosphate, and the xylitol was subsequently expelled from the cells. The dephosphorylation step appeared to be energy-requiring and it was most likely associated with a phosphatase which was active on xylitol 5-phosphate. Two to three successive cultivations of the cells in the presence of 6% xylitol increased this enzyme activity 4.3-fold. These results are in accordance with the presence of an energy-dependent xylitol 5-phosphate cycle in S. mutans , which is regulated by exogenous xylitol.en_US
dc.format.extent668831 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsMunksgaard 1990en_US
dc.subject.otherS. Mutansen_US
dc.subject.otherXylitolen_US
dc.titleExpulsion mechanism of xylitol 5-phosphate in Streptococcus mutansen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbsecondlevelOtolaryngologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Dentistry, The University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Biochemistry, Institute of Dentistry, Univrsity of Turku, Turku, Finlanden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71776/1/j.1600-0722.1990.tb00949.x.pdf
dc.identifier.doi10.1111/j.1600-0722.1990.tb00949.xen_US
dc.identifier.sourceEuropean Journal of Oral Sciencesen_US
dc.identifier.citedreferenceScheinin A, MÄkinen KK, eds. Turku sugar studies. Acta Odntol Scand 1975; 70: Suppl 33: 1 – 350.en_US
dc.identifier.citedreferenceScheinin A, BÁnÓczy J. Xylitol and caries: the collaborative WHO oral disease preventive programme in Hungary. Int Dent J 1985; 35: 50 – 7.en_US
dc.identifier.citedreferenceKandelman D, Gagnon G. Clinical results after 12 months from a study of the incidence and progression of dental caries in relation to consumption of chewing-gum containing xylitol in school preventive programs. J Dent Res 1987; 66: 1407 – 11.en_US
dc.identifier.citedreferenceIsokangas P, Alanen P, Tiekso J, MÄkinen KK. Xylitol chewing gum in caries prevention: a field study in children at caries-active ages. JADA 1988; 117: 315 – 20.en_US
dc.identifier.citedreferenceMÄkinen KK. New biochemical aspects of sweeteners. Int Dent J 1985; 35: 23 – 35.en_US
dc.identifier.citedreferenceMÄkinen KK, Isokangas P. Relationship between, carbohydrate sweeteners and oral diseases. Proc Food Nutr Sci 1988; 12: 73 – 109.en_US
dc.identifier.citedreferenceEdwardsson S, Birkhed D, Mejare B. Acid production from lycasin, maltitol, sorbitol and xylitol by oral streptococci and lactobacilli. Acta Odontol Scand 1977; 35: 257 – 63.en_US
dc.identifier.citedreferenceHavenaar R, Huis In't Veld JHJ, Backer Dirks O, de Stoppelaar JD. Some bacteriological aspects of sugar substitutes. In: Guggenheim, ed. Health and sugar substitutes. Basel: Karger, 1979; 192 – 8.en_US
dc.identifier.citedreferenceMÄkinen KK, Virtanen KK. Effect of 4.5-year use of xylitol and sorbitol on plaque. J Dent Res 1978; 57: 441 – 6.en_US
dc.identifier.citedreferenceMÄkinen KK, SÖderling E, HÄmÄlÄinen M, Antonen P. Effect of long-term use of xylitol on dental plaque. Proc Finn Dent Soc 1985; 81: 28 – 35.en_US
dc.identifier.citedreferenceAssev S, Vegarud G, RÖlla G. Growth inhibition of Streptococcus mutans strain OZM 176 by xylitol. Acta Pathol Microbiol Immunol Scand Sect B 1980; 88: 61 – 3.en_US
dc.identifier.citedreferenceVadeboncoeur C, Trahan L, Mouton C, Mayrand D. Effect of xylitol on the growth and glycolysis of acidogenic oral bacteria. J Dent Res 1983; 62: 882 – 4.en_US
dc.identifier.citedreferenceTrahan L, Bareil M, Gauthier L, Vadeboncoeur C. Transport and phosphorylation of xylitol by a fructose phosphotransferase system in Streptococcus mutans. Caries Res 1985; 19: 53 – 63.en_US
dc.identifier.citedreferenceReizer J, Peterkofsky A. Regulatory mechanisms for sugar transport in gram-positive bacteria. In: Reizer J, Peterkofsky A, eds., Sugar transport and metabolism in Gram-positive bacteria. Chichester: Ellis Horwood, 1987.en_US
dc.identifier.citedreferenceGauthier L, Mayrand D, Vadeboncoeur C. Isolation of a novel protein involved in the transport of fructose by an inducible phosphoenolpyruvate fructose phosphotransferase system in Streptococcus mutans. J Bacteriol 1984; 160: 755 – 63.en_US
dc.identifier.citedreferenceVadeboncoeur C. Structure and properties of the phosphoenolpyruvate: glucose phosphotransferase system of oral streptococci. Can J Microbiol 1984; 30: 495 – 502.en_US
dc.identifier.citedreferenceVadeboncoeur C, Thibault L, Neron S, Halvorson H, Hamilton IR. Effect of growth conditions on levels of components of the phosphoenolpyruvate:sugar phosphotransferase system in Streptococcus mutans and Streptococcus sobrinus grown in continuous culture. J Bacteriol 1987; 169: 5686 – 91.en_US
dc.identifier.citedreferenceRodrique L, Lacoste L, Trahan L, Vadeboncoeur C. Effect of nutritional constraints on the biosynthesis of the components of the phosphoenolpyruvate:sugar phosphotransferase system in a fresh isolate of Streptococcus mutans. Infect Immun 1988; 2: 518 – 22.en_US
dc.identifier.citedreferenceReizer J, Panos C. Regulation of Β-galactoside phosphate accumulation in Streptococcus pyogenes by an expulsion mechanism. Proc Natl Acad Sci USA 1980; 77: 5497 – 5501.en_US
dc.identifier.citedreferenceHausman SZ, Thompson J, London J. Futile xylitol cycle in Lactobacillus casei. J Bacteriol 1984; 160: 211 – 5.en_US
dc.identifier.citedreferenceTen Brink B, Beckers HJA. Does xylitol inhibit growth and acid production of Streptococcus mutans by the introduction of a PEP-consuming futile cycle ? J Dent Res ( Spec Issue ) 1985; 64: 194 ( only ).en_US
dc.identifier.citedreferenceSÖderling E, Pihlanto-LeppÄlÄ A. Uptake and expulsion of 14 C-xylitol by xylitol-cultured Streptococcus mutans ATCC 25175 in vitro. Scand J Dent Res: in press.en_US
dc.identifier.citedreferenceAssev S, RÖlla G. Further studies on growth inhibition of Streptococcus mutans OMZ 176 by xylitol. Acta Pathol Microbiol-Immunol Scand 1986; Sect B, 94: 97 – 102.en_US
dc.identifier.citedreferenceKundig W, Roseman S. Sugar transport II. Characterization of constitutive membranebound enzymes II of the Escherichia coli phosphotransferase system. J Biol Chem 1971; 246: 1407 – 18.en_US
dc.identifier.citedreferenceMarzluf GA, Metzenberg RI. A simplified preparation of the unusual disaccharides, 3-ketosucrose and allosucrose. Anal Biochem 1965; 13: 168 – 70.en_US
dc.identifier.citedreferenceLondon J, Hausman S. Xylitol-mediated transient inhibition of ribitol utilization by Lactobacillus casei. J Bacteriol 1982; 150: 756 – 61.en_US
dc.identifier.citedreferenceHorder M. Colorimetric determination of orthophosphate in the assay of inorganic pyrophosphatase activity. Anal Biochem 1972; 49: 37 – 47.en_US
dc.identifier.citedreferenceLowry OH, Rosebrough MJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265 – 75.en_US
dc.identifier.citedreferenceReizer J, Novotny MJ, Panos C, Saier Jr MH. Mechanism of inducer expulsion in Streptococcus pyogenes: a two-step process activated by ATP. J Bacteriol 1983: 156: 354 – 61.en_US
dc.identifier.citedreferenceGauthier L, Vadeboncoeur C, Mayrand D. Loss of sensitivity to xylitol by Streptococcus mutans LG-1. Caries Res 1984; 18: 289 – 95.en_US
dc.identifier.citedreferencePihlanto-LeppÄlÄ A, SÖderling E, MÄkinen KK. Uptake of 14 C-xylitol by xylitol-cultured Streptococcus sobrinus ATCC 27352 and Streptococcus mitis ATCC 36249 in vitro, manuscript: Proc Finn Dent Soc: submitted.en_US
dc.identifier.citedreferenceTen Brink B, Beckers HJA. Does xylitol inhibit growth and acid production of Steptococcus mutans by the introduction of the PEP-consuming futile cycle ? J Dent Res ( Spec Issue ) 1985; 64: 194 ( only ).en_US
dc.identifier.citedreferenceSutrina SL, Reizer J, Saier Jr MH. Induced expulsion in efflux reaction. J Bacteriol 1988; 170: 1874 – 7.en_US
dc.identifier.citedreferenceReizer J, Deutscher J, Sutrina S, Thompson J, Saier Jr MH. Sugar accumulation in Gram positive bacteria: exclusion and expulsion mechanisms. TIBS 1985; January: 32 – 5.en_US
dc.identifier.citedreferenceLee Y, Sowokinos JR, Erwin MJ. Sugar phosphate phosphohydrolase. I. Substrate specificity, intracellular localization, and purification from Neisseria meningitidis. J Biol Chem 1967; 242: 2264 – 71.en_US
dc.identifier.citedreferenceKier LD, Weppelman R, Ames BN. Resolution and purification of three periplasmic phosphatases of Salmonella typhimurium. J Bacteriol 1977; 130: 399 – 410.en_US
dc.identifier.citedreferenceThompson J, Chassy BM. Intracellular hexose-6-phosphate: phosphohydrolase from Streptococcus lactis: purification, properties and function. J Bacteriol 1983; 156: 70 – 80.en_US
dc.identifier.citedreferenceLondon J, Hausman SZ, Thompson J. Characterization of a membrane-regulated sugar phosphate phsophohydrolase from Lactobacillus casei. J Bacteriol 1985; 163: 951 – 6.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.