Show simple item record

Lot6p from Saccharomyces cerevisiae is a FMN-dependent reductase with a potential role in quinone detoxification

dc.contributor.authorSollner, Sonjaen_US
dc.contributor.authorNebauer, Ruthen_US
dc.contributor.authorEhammer, Heidemarieen_US
dc.contributor.authorPrem, Annaen_US
dc.contributor.authorDeller, Sigriden_US
dc.contributor.authorPalfey, Bruce A.en_US
dc.contributor.authorDaum, Güntheren_US
dc.contributor.authorMacheroux, Peteren_US
dc.date.accessioned2010-06-01T18:43:24Z
dc.date.available2010-06-01T18:43:24Z
dc.date.issued2007-03en_US
dc.identifier.citationSollner, Sonja; Nebauer, Ruth; Ehammer, Heidemarie; Prem, Anna; Deller, Sigrid; Palfey, Bruce A.; Daum, GÜnther; Macheroux, Peter (2007). "Lot6p from Saccharomyces cerevisiae is a FMN-dependent reductase with a potential role in quinone detoxification." FEBS Journal 274(5): 1328-1339. <http://hdl.handle.net/2027.42/71921>en_US
dc.identifier.issn1742-464Xen_US
dc.identifier.issn1742-4658en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71921
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17298444&dopt=citationen_US
dc.format.extent447017 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2007 The Authors Journal compilation 2007 FEBSen_US
dc.subject.otherDT-diaphoraseen_US
dc.subject.otherLot6pen_US
dc.subject.otherNQO1en_US
dc.subject.otherQuinone Reductaseen_US
dc.subject.otherRedox Cyclingen_US
dc.titleLot6p from Saccharomyces cerevisiae is a FMN-dependent reductase with a potential role in quinone detoxificationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum2 Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationother1 Graz University of Technology, Institute of Biochemistry, Graz, Austriaen_US
dc.identifier.pmid17298444en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71921/1/j.1742-4658.2007.05682.x.pdf
dc.identifier.doi10.1111/j.1742-4658.2007.05682.xen_US
dc.identifier.sourceFEBS Journalen_US
dc.identifier.citedreferenceErnster L ( 1987 ) DT-diaphorase – a historical review. Chemica Scripta 27A, 1 – 13.en_US
dc.identifier.citedreferenceRadjendirane V, Joseph P, Lee Y-H, Kimura S, Klein-Szanto AJP, Gonzalez FJ & Jaiswal AK ( 1998 ) Disruption of the DT diaphorase (NQO1) gene in mice leads to increased menadione toxicity. J Biol Chem 273, 7382 – 7389.en_US
dc.identifier.citedreferenceRoss D, Kepa JK, Winski SL, Beall HD, Anwar A & Siegel D ( 2000 ) NAD(P)H: quinone oxidoreductase 1 (NQO1): Chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem-Biol Interact 129, 77 – 97.en_US
dc.identifier.citedreferenceFaig M, Bianchet MA, Talalay P, Chen S, Winski S, Ross D & Amzel LM ( 2000 ) Structures of recombinant human and mouse NAD(P)H: quinone oxidoreductases: species comparison and structural changes with substrate binding and release. Proc Natl Acad Sci USA 97, 3177 – 3182.en_US
dc.identifier.citedreferenceFoster CE, Bianchet MA, Talalay P, Zhao Q & Amzel LM ( 1999 ) Crystal structure of human quinone reductase type 2, a metalloflavoprotein. Biochemistry 38, 9881 – 9886.en_US
dc.identifier.citedreferenceLi R, Bianchet MA, Talalay P & Amzel LM ( 1995 ) The three-dimensional structure of NAD(P)H: quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Proc Natl Acad Sci USA 92, 8846 – 8850.en_US
dc.identifier.citedreferenceThorn JM, Barton JD, Dixon NE, Ollis DL & Edwards KJ ( 1995 ) Crystal structure of Escherichia coli QOR quinone oxidoreductase complexed with NADPH. J Mol Biol 249, 785 – 799.en_US
dc.identifier.citedreferenceBrock BJ & Gold MH ( 1996 ) 1,4-Benzoquinone reductase from the Basidiomycete Phanerochaete chrysosporium: spectral and kinetic analysis. Arch Biochem Biophys 331, 31 – 40.en_US
dc.identifier.citedreferenceProchaska HJ, De Long MJ & Talalay P ( 1985 ) On the mechanisms of induction of cancer-protective enzymes: a unifying proposal. Proc Natl Acad Sci USA 82, 8232 – 8236.en_US
dc.identifier.citedreferenceProchaska HJ & Talalay P ( 1991 ) In Oxidative Stress: Oxidants and Antioxidants ( Sies, H, eds), pp. 195 – 211. Academic Press, London.en_US
dc.identifier.citedreferenceFavreau LV & Pickett CB ( 1991 ) Transcriptional regulation of the rat NAD(P)H: quinone reductase gene: identification of regulatory elements controlling basal level expression and inducible expression by planar aromatic compounds and phenolic antioxidants. J Biol Chem 266, 4556 – 4561.en_US
dc.identifier.citedreferenceDenison MS & Fisher JM ( 1988 ) The DNA recognition site for the dioxin-Ah receptor complex: nucleotide sequence and functional analysis. J Biol Chem 263, 17221 – 17224.en_US
dc.identifier.citedreferenceZhang L, Ohta A, Horiuchi H, Takagi M & Imai R ( 2001 ) Multiple mechanisms regulate expression of low temperature responsive (LOT) genes in Saccharomyces cerevisiae. Biochem Biophys Res Commun 283, 531 – 535.en_US
dc.identifier.citedreferenceLiger D, Graille M, Zhou CZ, Leulliot N, Quevillon-Cheruel S, Blondeau K, Janin J & van Tilbeurgh H ( 2004 ) Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities. J Biol Chem 279, 34890 – 34897.en_US
dc.identifier.citedreferenceDeller S, Sollner S, Trenker-El-Toukhy R, Jelesarov I, GÜbitz GM & Macheroux P ( 2006 ) Characterization of a thermostable NADPH: FMN oxidoreductase from the mesophilic bacterium Bacillus subtilis. Biochemistry 45, 7083 – 7091.en_US
dc.identifier.citedreferenceWinzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, et al. ( 1999 ) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901 – 906.en_US
dc.identifier.citedreferenceDaum G, BÖhni PC & Schatz G ( 1982 ) Import of proteins into mitochondria: cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria, J Biol Chem 257, 13028 – 13033.en_US
dc.identifier.citedreferenceZinser E, Sperka-Gottlieb CDM, Fasch E-V, Kohlwein SD, Paltauf F & Daum G ( 1991 ) Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J Bacteriol 173, 2026 – 2034.en_US
dc.identifier.citedreferenceHurt EC, McDowall A & Schimmang T ( 1988 ) Nucleolar and nuclear envelope proteins of the yeast Saccharomyces cerevisiae. Eur J Cell Biol 46, 554 – 563.en_US
dc.identifier.citedreferenceAris JP & Blobel G ( 1991 ) Isolation of yeast nuclei. Methods Enzymol 194, 735 – 749.en_US
dc.identifier.citedreferenceUchida E, Ohsumi Y & Anraku Y ( 1988 ) Purification of yeast vacuolar membrane H + -ATPase and enzymological discrimination of three ATP-driven proton pumps in Saccharomyces cerevisiae. Methods Enzymol 157, 544 – 562.en_US
dc.identifier.citedreferenceSerrano R ( 1988 ) H + -ATPase from plasma membranes of Saccharomyces cerevisiae and Avena sativa roots: purification and reconstitution. Methods Enzymol 157, 523 – 544.en_US
dc.identifier.citedreferenceZinser E & Daum G ( 1995 ) Isolation and biochemical characterization of organelles from the yeast Saccharomyces cerevisiae. Yeast 11, 493 – 536.en_US
dc.identifier.citedreferenceLowry OH, Rosebrough NJ, Farr AL & Randall RJ ( 1951 ) Protein measurement with the folin phenol reagent. J Biol Chem 193, 265 – 275.en_US
dc.identifier.citedreferenceLaemmli UK ( 1970 ) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680 – 685.en_US
dc.identifier.citedreferenceHaid A & Suissa M ( 1983 ) Immunochemical identification of membrane proteins after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Methods Enzymol 96, 192 – 205.en_US
dc.identifier.citedreferenceLongtine MS, McKenzie A, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P & Pringle JR ( 1998 ) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerervisiae. Yeast 14, 953 – 961.en_US
dc.identifier.citedreferenceGietz D, St. Jean A, Woods RA & Schiestl RH ( 1992 ) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20, 1425.en_US
dc.identifier.citedreferenceRodriguez CE, Shinyashiki M, Froines JYuRC, Fukuto JM & Cho AK ( 2004 ) An examination of quinone toxicity using the yeast Saccharomyces cerevisiae model system. Toxicology 201, 185 – 196.en_US
dc.identifier.citedreferenceMassey V ( 1990 ) Flavin and Flavoproteins ( Curti, B, Ronchi, S, & & Zanetti, G, eds), pp. 59 – 66. Walter de Gruyter & Co, Berlin.en_US
dc.identifier.citedreferenceKumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, et al. ( 2002 ) Subcellular localization of the yeast proteome. Genes Dev 16, 707 – 719.en_US
dc.identifier.citedreferenceHuh W-K, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS & O'Shea EK ( 2003 ) Global analysis of protein localization in budding yeast. Nature 425, 686 – 691.en_US
dc.identifier.citedreferenceMÜller O ( 1942 ) Oxidation–reduction potentials measured with the dropping mercury electrode. J Biol Chem 145, 425 – 441.en_US
dc.identifier.citedreferenceMinnaert K ( 1965 ) Measurement of the equilibrium constant of the reaction between cytochrome c and cytochrome a. Biochim Biophys Acta 110, 42 – 56.en_US
dc.identifier.citedreferenceSuzuki Y, Yoda T, Ruhul A & Sugiura W ( 2001 ) Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp. OY1-2 isolated from soil. J Biol Chem 276, 9059 – 9065.en_US
dc.identifier.citedreferenceTrost P, Bonora P, Scagliarini S & Pupillo P ( 1995 ) Purification and properties of NAD(P)H: (quinone-acceptor) oxidoreductase of sugarbeet cells. Eur J Biochem 234, 452 – 458.en_US
dc.identifier.citedreferenceZhou Z, Fisher D, Spidel J, Greenfield J, Patson B, Fazal A, Wigal C, Moe OA & Madura JD ( 2003 ) Kinetic and docking studies of the interaction of quinones with the quinone reductase active site. Biochemistry 42, 1985 – 1994.en_US
dc.identifier.citedreferenceIyanagi T ( 1987 ) On the mechanisms of one- and two-electron transfer by flavin enzymes. Chemica Scripta 27A, 31 – 36.en_US
dc.identifier.citedreferenceTedeschi G, Chen S & Massey V ( 1995 ) DT-diaphorase: redox potential, steady-state, and rapid reaction studies. J Biol Chem 270, 1198 – 1204.en_US
dc.identifier.citedreferencePrestera T, Prochaska HJ & Talalay P ( 1992 ) Inhibition of NAD(P)H: (quinone-acceptor) oxidoreductase by cibacron blue and related anthraquinone dyes: a structure–activity study. Biochemistry 31, 824 – 833.en_US
dc.identifier.citedreferenceHosoda S, Nakamura W & Hayashi K ( 1974 ) Properties and reaction mechanism of DT diaphorase from rat liver. J Biol Chem 249, 6416 – 6423.en_US
dc.identifier.citedreferenceAsher G, Dym O, Tsvetkov P, Adler J & Shaul Y ( 2006 ) The crystal structure of NAD(P)H quinone oxidoreductase 1 in complex with its potent inhibitor dicoumarol. Biochemistry 45, 6372 – 6378.en_US
dc.identifier.citedreferenceSoballe B & Poole RK ( 1999 ) Microbial ubiquinones: multiple roles in respiration, gene regulation and oxidative stress management. Microbiology 145, 1817 – 1830.en_US
dc.identifier.citedreferenceAsher G, Tsvetkov P, Kahana C & Shaul Y ( 2005 ) A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev 19, 316 – 321.en_US
dc.identifier.citedreferenceVolland C, Urban-Grimal D, Geraud G & Haguenauer-Tsapis R ( 1994 ) Endocytosis and degradation of the yeast uracil permease under adverse conditions. J Biol Chem 269, 9833 – 9841.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.