Show simple item record

FYN is overexpressed in human prostate cancer

dc.contributor.authorPosadas, Edwin M.en_US
dc.contributor.authorAl-Ahmadie, Hikmaten_US
dc.contributor.authorRobinson, Victoria L.en_US
dc.contributor.authorJagadeeswaran, Ramasamyen_US
dc.contributor.authorOtto, Kristenen_US
dc.contributor.authorKasza, Kristen E.en_US
dc.contributor.authorTretiakov, Mariaen_US
dc.contributor.authorSiddiqui, Javeden_US
dc.contributor.authorPienta, Kenneth J.en_US
dc.contributor.authorStadler, Walter M.en_US
dc.contributor.authorRinker-Schaeffer, Carrieen_US
dc.contributor.authorSalgia, Ravien_US
dc.date.accessioned2010-06-01T18:47:30Z
dc.date.available2010-06-01T18:47:30Z
dc.date.issued2009-01en_US
dc.identifier.citationPosadas, Edwin M.; Al-Ahmadie, Hikmat; Robinson, Victoria L.; Jagadeeswaran, Ramasamy; Otto, Kristen; Kasza, Kristen E.; Tretiakov, Maria; Siddiqui, Javed; Pienta, Kenneth J.; Stadler, Walter M.; Rinker-Schaeffer, Carrie; Salgia, Ravi (2009). " FYN is overexpressed in human prostate cancer." BJU International 103(2): 171-177. <http://hdl.handle.net/2027.42/71987>en_US
dc.identifier.issn1464-4096en_US
dc.identifier.issn1464-410Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71987
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18990162&dopt=citationen_US
dc.description.abstractTo test the hypothesis that FYN , a member of the SRC family of kinases (SFKs), is up-regulated in prostate cancer, as FYN is functionally distinct from other SFKs, and interacts with FAK and paxillin (PXN), regulators of cell morphology and motility. MATERIALS AND METHODS Through data-mining in Oncomine ( http://www.oncomine.org ), cell-line profiling with immunoblotting, quantitative reverse transcription and polymerase chain reaction (RT-PCR) and immunohistochemical analysis, we described FYN expression in prostate cancer. The analysis included 32 cases of prostate cancer, nine of prostatic intraepithelial neoplasia (PIN) and 19 normal prostates. Samples were scored for the percentage of stained glands and intensity of staining (from 0 to 3). Each sample was assigned a composite score generated by multiplying percentage and intensity. RESULTS Data-mining showed an eight times greater FYN expression in prostate cancer than in normal tissue; this was specific to FYN and not present for other SFKs. Expression of FYN in prostate cancer cell lines (LNCaP, 22Rv1, PC3, DuPro) was detected using quantitative RT-PCR and immunoblotting. Expression of FYN and its signalling partners FAK and PXN was detected in human tissue. Comparing normal with cancer samples, there was a 2.1-fold increase in median composite score for FYN ( P  < 0.001) 1.7-fold increase in FAK ( P  < 0.001), and a doubling in PXN ( P  < 0.05). There was a 1.7-fold increase in FYN ( P  < 0.05) and a 1.6-fold increase in FAK ( P  < 0.01) in cancer compared with PIN. CONCLUSIONS These studies support the hypothesis that FYN and its related signalling partners are up-regulated in prostate cancer, and support further investigation into the role of the FYN as a therapeutic target.en_US
dc.format.extent369442 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2009 BJU Internationalen_US
dc.subject.otherFYNen_US
dc.subject.otherSRCen_US
dc.subject.otherProstate Canceren_US
dc.subject.otherPaxillinen_US
dc.subject.otherFAKen_US
dc.titleFYN is overexpressed in human prostate canceren_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Internal Medicine, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationother* Section of Hematology/Oncology, Department of Medicine,en_US
dc.contributor.affiliationotherSection of Urology, Department of Surgery,en_US
dc.contributor.affiliationotherInterdepartmental Metastasis Working Group, Departments ofen_US
dc.contributor.affiliationotherPathology anden_US
dc.contributor.affiliationotherHealth Studies, University of Chicago, Chicago, IL, anden_US
dc.identifier.pmid18990162en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71987/1/j.1464-410X.2008.08009.x.pdf
dc.identifier.doi10.1111/j.1464-410X.2008.08009.xen_US
dc.identifier.sourceBJU Internationalen_US
dc.identifier.citedreferenceJemal A, Siegel R, Ward E et al. Cancer statistics, 2008. CA Cancer J Clin 2008; 58: 71 – 96en_US
dc.identifier.citedreferenceChang YM, Kung HJ, Evans CP. Nonreceptor tyrosine kinases in prostate cancer. Neoplasia 2007; 9: 90 – 100en_US
dc.identifier.citedreferenceResh MD. Fyn, a Src family tyrosine kinase. Int J Biochem Cell Biol 1998; 30: 1159 – 62en_US
dc.identifier.citedreferenceKawakami T, Kawakami Y, Aaronson SA, Robbins KC. Acquisition of transforming properties by FYN, a normal SRC-related human gene. Proc Natl Acad Sci USA 1988; 85: 3870 – 4en_US
dc.identifier.citedreferenceAngelucci A, Schenone S, Gravina GL et al. Pyrazolo[3,4-d]pyrimidines c-Src inhibitors reduce epidermal growth factor-induced migration in prostate cancer cells. Eur J Cancer 2006; 42: 2838 – 45en_US
dc.identifier.citedreferenceMizutani T, Shiraishi K, Welsh T, Ascoli M. Activation of the lutropin/choriogonadotropin receptor in MA-10 cells leads to the tyrosine phosphorylation of the focal adhesion kinase by a pathway that involves Src family kinases. Mol Endocrinol 2006; 20: 619 – 30en_US
dc.identifier.citedreferenceRhodes DR, Kalyana-Sundaram S, Mahavisno V et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 2007; 9: 166 – 80en_US
dc.identifier.citedreferenceBare DJ, Lauder JM, Wilkie MB, Maness PF. p59fyn in rat brain is localized in developing axonal tracts and subpopulations of adult neurons and glia. Oncogene 1993; 8: 1429 – 36en_US
dc.identifier.citedreferenceRubin MA, Mucci NR, Figurski J, Fecko A, Pienta KJ, Day ML. E-cadherin expression in prostate cancer: a broad survey using high-density tissue microarray technology. Hum Pathol 2001; 32: 690 – 7en_US
dc.identifier.citedreferenceGarcia S, Dales JP, Charafe-Jauffret E et al. Poor prognosis in breast carcinomas correlates with increased expression of targetable CD146 and c-Met and with proteomic basal-like phenotype. Hum Pathol 2007; 38: 830 – 41en_US
dc.identifier.citedreferenceBartlett M. Properties of sufficiency and statistical tests. Proc Royal Soc Lond Ser A 1937; 160: 268 – 82en_US
dc.identifier.citedreferenceCuzick J. A Wilcoxon-type test for trend. Stat Med 1985; 4: 87 – 90en_US
dc.identifier.citedreferenceTomlins SA, Mehra R, Rhodes DR et al. Integrative molecular concept modeling of prostate cancer progression. Nat Genet 2007; 39: 41 – 51en_US
dc.identifier.citedreferenceVarambally S, Yu J, Laxman B et al. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 2005; 8: 393 – 406en_US
dc.identifier.citedreferenceLu Z, Ku L, Chen Y, Feng Y. Developmental abnormalities of myelin basic protein expression in fyn knock-out brain reveal a role of Fyn in posttranscriptional regulation. J Biol Chem 2005; 280: 389 – 95en_US
dc.identifier.citedreferenceHe Z, Tang F, Ermakova S et al. Fyn is a novel target of (-) -epigallocatechin gallate in the inhibition of JB6 Cl41 cell transformation. Mol Carcinog 2008; 47: 172 – 83en_US
dc.identifier.citedreferenceGarcia S, Dales JP, Charafe-Jauffret E et al. Overexpression of c-Met and of the transducers PI3K, FAK and JAK in breast carcinomas correlates with shorter survival and neoangiogenesis. Int J Oncol 2007; 31: 49 – 58en_US
dc.identifier.citedreferenceJuric D, Lacayo NJ, Ramsey MC et al. Differential gene expression patterns and interaction networks in BCR-ABL-positive and – negative adult acute lymphoblastic leukemias. J Clin Oncol 2007; 25: 1341 – 9en_US
dc.identifier.citedreferenceLerma EI, Nguyen VA, Wang T et al. Novel compounds with antiproliferative activity against imatinib-resistant cell lines. Mol Cancer Ther 2007; 6: 655 – 66en_US
dc.identifier.citedreferenceHuang F, Reeves K, Han X et al. Identification of candidate molecular markers predicting sensitivity in solid tumors to dasatinib: rationale for patient selection. Cancer Res 2007; 67: 2226 – 38en_US
dc.identifier.citedreferenceSorensen KD, Borre M, Orntoft TF, Dyrskjot L, Torring N. Chromosomal deletion, promoter hypermethylation and downregulation of FYN in prostate cancer. Int J Cancer 2008; 122: 509 – 19en_US
dc.identifier.citedreferenceLotan TL, Lyon M, Huo D et al. Up-regulation of MKK4, MKK6 and MKK7 during prostate cancer progression: an important role for SAPK signalling in prostatic neoplasia. J Pathol 2007; 212: 386 – 94en_US
dc.identifier.citedreferenceSlack JK, Adams RB, Rovin JD, Bissonette EA, Stoker CE, Parsons JT. Alterations in the focal adhesion kinase/Src signal transduction pathway correlate with increased migratory capacity of prostate carcinoma cells. Oncogene 2001; 20: 1152 – 63en_US
dc.identifier.citedreferenceSumitomo M, Shen R, Walburg M et al. Neutral endopeptidase inhibits prostate cancer cell migration by blocking focal adhesion kinase signaling. J Clin Invest 2000; 106: 1399 – 407en_US
dc.identifier.citedreferenceZheng DQ, Woodard AS, Fornaro M, Tallini G, Languino LR. Prostatic carcinoma cell migration via alpha (v) beta3 integrin is modulated by a focal adhesion kinase pathway. Cancer Res 1999; 59: 1655 – 64en_US
dc.identifier.citedreferenceTremblay L, Hauck W, Aprikian AG, Begin LR, Chapdelaine A, Chevalier S. Focal adhesion kinase (pp125FAK) expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. Int J Cancer 1996; 68: 164 – 71en_US
dc.identifier.citedreferenceYe L, Lewis-Russell JM, Kynaston H, Jiang WG. Endogenous bone morphogenetic protein-7 controls the motility of prostate cancer cells through regulation of bone morphogenetic protein antagonists. J Urol 2007; 178: 1086 – 91en_US
dc.identifier.citedreferenceRovin JD, Frierson HF Jr, Ledinh W, Parsons JT, Adams RB. Expression of focal adhesion kinase in normal and pathologic human prostate tissues. Prostate 2002; 53: 124 – 32en_US
dc.identifier.citedreferenceZeng ZZ, Jia Y, Hahn NJ, Markwart SM, Rockwood KF, Livant DL. Role of focal adhesion kinase and phosphatidylinositol 3′-kinase in integrin fibronectin receptor-mediated, matrix metalloproteinase-1-dependent invasion by metastatic prostate cancer cells. Cancer Res 2006; 66: 8091 – 9en_US
dc.identifier.citedreferenceSahu SN, Nunez S, Bai G, Gupta A. Interaction of Pyk2 and PTP-PEST with leupaxin in prostate cancer cells. Am J Physiol Cell Physiol 2007; 292: C2288 – 96en_US
dc.identifier.citedreferenceChang YM, Bai L, Yang YC, Kung HJ, Evans CP. AZD0530 is a novel Src inhibitor with anti-proliferation and anti-migration properties in prostate cancer. Proc AACR 2007, Los Angeles, CA, 2007: Abstract LB-24en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.