Show simple item record

The Role of a Bioengineered Artificial Kidney in Renal Failure

dc.contributor.authorFissell, William H.en_US
dc.contributor.authorKimball, Jasonen_US
dc.contributor.authorMackay, Sherrill M.en_US
dc.contributor.authorFunke, Angela J.en_US
dc.contributor.authorHumes, H. Daviden_US
dc.date.accessioned2010-06-01T18:47:59Z
dc.date.available2010-06-01T18:47:59Z
dc.date.issued2001-11en_US
dc.identifier.citationFISSELL, WILLIAM H.; KIMBALL, JASON; MACKAY, SHERRILL M.; FUNKE, ANGELA; HUMES, H. DAVID (2001). "The Role of a Bioengineered Artificial Kidney in Renal Failure." Annals of the New York Academy of Sciences 944(1 BIOARTIFICIAL ORGANS III: TISSUE SOURCING, IMMUNOISOLATION, AND CLINICAL TRIALS ): 284-295. <http://hdl.handle.net/2027.42/71995>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/71995
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11797678&dopt=citationen_US
dc.description.abstractRenal failure continues to carry substantial burden of morbidity and mortality in both acute and chronic forms, despite advances in transplantation and dialysis. There is evidence to suggest that the kidney has metabolic, endocrine, and immune effects transcending its filtration functions, even beyond secretion of renin and erythropoietin. Our laboratory has developed experience in the tissue culture of renal parenchymal cells, and has now been able to demonstrate the metabolic activity of these cells in an extracorporeal circuit recapitulating glomerulotubular anatomy. We have observed active transport of sodium, glucose, and glutathione. We describe the design and initial preclinical testing of the bioartificial kidney, as well as future directions of our research.en_US
dc.format.extent492334 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2001 by the New York Academy of Sciencesen_US
dc.subject.otherBioengineeringen_US
dc.subject.otherArtificial Kidneyen_US
dc.subject.otherRenal Failureen_US
dc.titleThe Role of a Bioengineered Artificial Kidney in Renal Failureen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Internal Medicine, VA Medical Center and University of Michigan, Ann Arbor, Michigan, USAen_US
dc.identifier.pmid11797678en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/71995/1/j.1749-6632.2001.tb03841.x.pdf
dc.identifier.doi10.1111/j.1749-6632.2001.tb03841.xen_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceWolfe, R., V. Ashby, E. Milford, et al. 1999. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N. Engl. J. Med. 341: 1725 – 1730.en_US
dc.identifier.citedreferenceAlkhunaizi, A.M. &R.W. Schrier. 1996. Management of acute renal failure: new perspectives. AJKD 28: 315 – 328.en_US
dc.identifier.citedreferenceBone, R.C., C.J. Fischer, T.P. Clemmer, et al. 1987. A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 317 ( 11 ): 653 – 658.en_US
dc.identifier.citedreferenceDavies, M.G. &P.-O. Hagen. 1997. Systemic inflammatory response syndrome. Br. J. Surg. 84 ( 7 ): 920 – 935.en_US
dc.identifier.citedreferenceGroeneveld, A., D. Tran, J. van der Meulen, et al. 1991. Acute renal failure in the medical intensive care unit: predisposing, complicating factors and outcome. Nephron 59: 602 – 610.en_US
dc.identifier.citedreferenceHaraharan, S., C. Johnson, B. Bresnahan, et al. 2000. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N. Engl. J. Med. 342: 605 – 612.en_US
dc.identifier.citedreferenceNeilson, E., A. Hull, J. Wish, et al. 1997. The ad hoc committee report on estimating the future workforce and training requirements for nephrology. J. Am. Soc. Nephrol. 8 ( 5 Suppl. 9 ): S1 – S4.en_US
dc.identifier.citedreferenceOhshima, N., K. Yanagi & H. Miyoshi, 1999. Development of a packed-bed type bioartificial liver: tissue engineering approach. Transplant. Proc. 31: 2016 – 2017.en_US
dc.identifier.citedreferenceBusse, B. &J. Gerlach. 1999. Bioreactors for hybrid liver support: historical aspects and novel designs. Ann. N.Y. Acad. Sci. 875: 326 – 339.en_US
dc.identifier.citedreferenceDixit, V. &G. Gitnick. 1998. The bioartificial liver: state-of-the-art. Eur. J. Surg. Suppl. 582: 71 – 76.en_US
dc.identifier.citedreferenceNarue, K., I. Nagashima, Y. Sakai, et al. 1998. Efficacy of a bioreactor filled with porcine hepatocytes immobilized on nonwoven fabric for ex vivo direct hemoperfusion treatment of liver failure in dogs. Artificial Organs 22: 1031 – 1037.en_US
dc.identifier.citedreferenceNaka, S., K. Takeshita, T. Yamamoto, et al. 1999. Bioartificial liver support system using porcine hepatocytes entrapped in a three-dimensional hollow fiber module with collagen gel: an evaluation in the swine acute liver failure model. Artificial Organs 23: 822 – 828.en_US
dc.identifier.citedreferenceMcLaughlin, B., C. Tosone, L. Custer, et al. 1999. Overview of extracorporeal liver support systems and clinical results. Ann. N.Y. Acad. Sci. 875: 310 – 325.en_US
dc.identifier.citedreferencePatzer, J., G. Mazariegos, R. Lopez, et al. 1999. Novel bioartificial liver support system: preclinical evaluation. Ann. N.Y. Acad. Sci. 875: 340 – 352.en_US
dc.identifier.citedreferenceRoger, V., P. Balladur, J. Honiger, et al. 1998. Internal bioartificial liver with xenogeneic hepatocytes prevents death from acute liver failure: an experimental study. Ann. Surg. 228: 1 – 7.en_US
dc.identifier.citedreferenceIwata, H., T. Sajiki, H. Maeda, et al. 1999. In vitro evaluation of metabolic functions of a bioartificial liver. ASAIO J. 45: 299 – 306.en_US
dc.identifier.citedreferenceWatanabe, F., C. Mullon, W. Hewitt, et al. 1997. Clinical experience with a bioartificial liver in the treatment of severe liver failure. a phase I clinical trial. Ann. Surg. 225: 484 – 491.en_US
dc.identifier.citedreferenceWatanabe, F., C. Shackleton, S. Cohen, et al. 1997. Treatment of acetaminophen-induced fulminant hepatic failure with a bioartificial liver. Transplant. Proc. 29: 487 – 488.en_US
dc.identifier.citedreferenceHayashi, H., K. Inoue, T. Aung, et al. 1996. Long survival of xenografted bioartificial pancreas with a mesh-reinforced polyvinyl alcohol hydrogel bag employing a b-cell line (min6). Transplant. Proc. 28: 1428 – 1429.en_US
dc.identifier.citedreferenceDelaunay, C., S. Darquy, J. Honiger, et al. 1998. Glucose-insulin kinetics of a bioartificial pancreas made of an an69 hydrogel hollow fiber containing porcine islets and implanted in diabetic mice. Artificial Organs 22: 291 – 299.en_US
dc.identifier.citedreferenceCalafiore, R., G. Basta, L. Osticioli, et al. 1996. Coherent microcapsules for pancreatic islet transplantation: a new approach for bioartificial pancreas. Transplant. Proc. 28: 812 – 813.en_US
dc.identifier.citedreferenceOhgawara, H., S. Hirotani, J. Miyazaki, et al. 1998. Membrane immunoisolation of a diffusion chamber for bioartificial pancreas. Artificial Organs 22: 788 – 794.en_US
dc.identifier.citedreferenceOberholzer, J., F. Triponez, J. Lou, et al. 1999. Clinical islet transplantation: a review. Ann. N.Y. Acad. Sci. 875: 189 – 199.en_US
dc.identifier.citedreferenceHunter, S., Y. Wang, C. Weiner, et al. 1997. Encapsulated beta-islet cells as a bioartificial pancreas to treat insulin-dependent diabetes during pregnancy. Am. J. Obstet. Gynecol. 177: 746 – 752.en_US
dc.identifier.citedreferenceHunter, S., Y. Wang & V. Rodgers, 1999. Bioartificial pancreas use in diabetic pregnancy. ASAIO J. 45: 13 – 17.en_US
dc.identifier.citedreferenceMartin, U., V. Kiessig, J. Blusch, et al. 1998. Expression of pig endogenous retrovirus by primary porcine endothelial cells and infection of human cells. Lancet 352: 692 – 694.en_US
dc.identifier.citedreferencePatience, C., Y. Takeuchi & R. Weiss, 1997. Infection of human cells by an endogenous retrovirus of pigs. Nat. Med. 3: 282 – 286.en_US
dc.identifier.citedreferenceHumes, H. &D. Cieslinski. 1992. Interaction between growth factors and retinoic acid in the induction of kidney tubulogenesis in tissue culture. Exp. Cell Res. 201: 8 – 15.en_US
dc.identifier.citedreferenceHumes, H., J. Krauss & D. Cieslinski, et al. 1996. Tubulogenesis from isolated single cells of adult mammalian kidney: clonal analysis with a recombinant retrovirus. Am. J. Physiol. 271: F42 – 49.en_US
dc.identifier.citedreferenceOgawa, S., Z. Ota, K. Shikata, et al. 1999. High-resolution ultrastructural comparison of renal glomerular and tubular basement membranes. Am. J. Nephrol. 19: 686 – 693.en_US
dc.identifier.citedreferenceHumes, H., S. MacKay, A. Funke, et al. 1999. Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics. Kidney Int. 55: 2502 – 2514.en_US
dc.identifier.citedreferenceMackay, S., A. Funke, et al. 1998. Tissue engineering of a bioartificial renal tubule. ASAIO J. 44: 179 – 183.en_US
dc.identifier.citedreferenceBoyum, A. 1998. Isolation of mononuclear cells and granulocytes from human blood. Scand. J. Clin. Lab. Invest. 21: 77.en_US
dc.identifier.citedreferenceKimball, J., A. Funke, D. Buffington, et al. 2000. Effect of porcine cytokines on human peripheral blood mononuclear cells. Abstract. J. Am. Soc. Nephrol. 11: 665A.en_US
dc.identifier.citedreferenceCozzi, E., S. Masroor, B. Soin, et al. 2000. Progress in xenotransplantation. Clin. Nephrol. 53: 13 – 18.en_US
dc.identifier.citedreferenceGoddard, M., J. Foweraker & J. Wallwork, 2000. Xenotransplantation-2000. J. Clin. Pathol. 53: 44 – 48.en_US
dc.identifier.citedreferenceHumes, H., D. Buffington, S. MacKay, et al. 1999. Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat. Biotech. 17: 451 – 455.en_US
dc.identifier.citedreferenceNatanson, C., P. Elchenholz, R. Danner, et al. 1989. Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J. Exp. Med. 169: 823 – 832.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.