Show simple item record

C 3 grasses have higher nutritional quality than C 4 grasses under ambient and elevated atmospheric CO 2

dc.contributor.authorBarbehenn, Raymond V.en_US
dc.contributor.authorChen, Zhongen_US
dc.contributor.authorKarowe, David N.en_US
dc.contributor.authorSpickard, Angelaen_US
dc.date.accessioned2010-06-01T19:01:15Z
dc.date.available2010-06-01T19:01:15Z
dc.date.issued2004-09en_US
dc.identifier.citationBarbehenn, Raymond V.; Chen, Zhong; Karowe, David N.; Spickard, Angela (2004). "C 3 grasses have higher nutritional quality than C 4 grasses under ambient and elevated atmospheric CO 2 ." Global Change Biology 10(9): 1565-1575. <http://hdl.handle.net/2027.42/72210>en_US
dc.identifier.issn1354-1013en_US
dc.identifier.issn1365-2486en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72210
dc.description.abstractGrasses with the C 3 photosynthetic pathway are commonly considered to be more nutritious host plants than C 4 grasses, but the nutritional quality of C 3 grasses is also more greatly impacted by elevated atmospheric CO 2 than is that of C 4 grasses; C 3 grasses produce greater amounts of nonstructural carbohydrates and have greater declines in their nitrogen content than do C 4 grasses under elevated CO 2 . Will C 3 grasses remain nutritionally superior to C 4 grasses under elevated CO 2 levels? We addressed this question by determining whether levels of protein in C 3 grasses decline to similar levels as in C 4 grasses, and whether total carbohydrate : protein ratios become similar in C 3 and C 4 grasses under elevated CO 2 . In addition, we tested the hypothesis that, among the nonstructural carbohydrates in C 3 grasses, levels of fructan respond most strongly to elevated CO 2 . Five C 3 and five C 4 grass species were grown from seed in outdoor open-top chambers at ambient (370 ppm) or elevated (740 ppm) CO 2 for 2 months. As expected, a significant increase in sugars, starch and fructan in the C 3 grasses under elevated CO 2 was associated with a significant reduction in their protein levels, while protein levels in most C 4 grasses were little affected by elevated CO 2 . However, this differential response of the two types of grasses was insufficient to reduce protein in C 3 grasses to the levels in C 4 grasses. Although levels of fructan in the C 3 grasses tripled under elevated CO 2 , the amounts produced remained relatively low, both in absolute terms and as a fraction of the total nonstructural carbohydrates in the C 3 grasses. We conclude that C 3 grasses will generally remain more nutritious than C 4 grasses at elevated CO 2 concentrations, having higher levels of protein, nonstructural carbohydrates, and water, but lower levels of fiber and toughness, and lower total carbohydrate : protein ratios than C 4 grasses.en_US
dc.format.extent195463 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights© 2004 Blackwell Publishing Ltden_US
dc.subject.otherCarbohydrateen_US
dc.subject.otherC 3 Grassesen_US
dc.subject.otherC 4 Grassesen_US
dc.subject.otherElevated CO 2en_US
dc.subject.otherNutrienten_US
dc.subject.otherPoaceaeen_US
dc.subject.otherProteinen_US
dc.titleC 3 grasses have higher nutritional quality than C 4 grasses under ambient and elevated atmospheric CO 2en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Molecular, Cellular and Developmental Biology and Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA ,en_US
dc.contributor.affiliationum† Western Michigan University, Department of Biological Sciences, Kalamazoo, MI 49008-5410, USA ,en_US
dc.contributor.affiliationother† School of Forestry, Northern Arizona University, Flagstaff, AZ 86011-5018, USA ,en_US
dc.contributor.affiliationother§ Environmental Protection Agency, Ann Arbor, MI 48105, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72210/1/j.1365-2486.2004.00833.x.pdf
dc.identifier.doi10.1111/j.1365-2486.2004.00833.xen_US
dc.identifier.sourceGlobal Change Biologyen_US
dc.identifier.citedreferenceAkin DE, Kimball BA, Mauney JR et al. ( 1994 ) Influence of enhanced CO 2 concentration and irrigation on sudangrass digestibility. Agricultural and Forest Meteorology, 70, 279 – 287.en_US
dc.identifier.citedreferenceAkin DE, Kimball BA, Windham WR et al. ( 1995 ) Effect of free-air CO 2 enrichment (FACE) on forage quality. Animal Feed Science and Technology, 53, 29 – 43.en_US
dc.identifier.citedreferenceBarbehenn RV ( 1993 ) Silicon: an indigestible marker for measuring food consumption and utilization by insects. Entomologia Experimentalis et Applicata, 67, 247 – 251.en_US
dc.identifier.citedreferenceBarbehenn RV ( 1995 ) Measurement of protein in whole plant samples with ninhydrin. Journal of the Science of Food and Agriculture, 69, 353 – 359.en_US
dc.identifier.citedreferenceBarbehenn RV, Bernays EA ( 1992 ) Relative nutritional quality of C 3 and C 4 grasses for a graminivorous lepidopteran, Paratrytone melane (Hesperiidae). Oecologia, 92, 97 – 103.en_US
dc.identifier.citedreferenceBarbehenn RV, Karowe DN, Chen Z ( 2004a ) Performance of a generalist grasshopper on a C 3 and C 4 grass: compensation for the effects of elevated CO 2 on plant nutritional quality. Oecologia, 140, 96 – 103.en_US
dc.identifier.citedreferenceBarbehenn RV, Karowe DN, Spickard A ( 2004b ) Effects of elevated atmospheric CO 2 on the nutritional ecology of C 3 and C 4 grass-feeding caterpillars. Oecologia, 140, 86 – 95.en_US
dc.identifier.citedreferenceBernays EA, Barbehenn RV ( 1987 ) Nutritional ecology of grass foliage-chewing insects. In: Nutritional Ecology of Insects, Mites, Spiders and Related Invertebrates ( eds Slansky F Jr., Rodriguez JG ), pp. 146 – 174. John Wiley and Sons, New York.en_US
dc.identifier.citedreferenceBernays EA, Hamai J ( 1987 ) Head size and shape in relation to grass feeding Acridoidea (Orthoptera). International Journal of Morphology and Embryology, 16, 323 – 336.en_US
dc.identifier.citedreferenceCaswell H, Reed F, Stephenson SN ( 1973 ) Photosynthetic pathways and selective herbivory: a hypothesis. American Naturalist, 107, 465 – 480.en_US
dc.identifier.citedreferenceCave G, Tolley LC, Strain BR ( 1981 ) Effect of carbon dioxide enrichment on chlorophyll content, starch content and starch grain structure in Trifolium subterraneum leaves. Physiologia Plantarum, 51, 171 – 174.en_US
dc.identifier.citedreferenceChatterton NJ, Harrison PA, Bennett JH et al. ( 1989 ) Carbohydrate partitioning in 185 accessions of Gramineae grown under warm and cool temperatures. Journal of Plant Physiology, 134, 169 – 179.en_US
dc.identifier.citedreferenceChoong MF, Lucas PW, Ong JSY et al. ( 1992 ) Leaf fracture toughness and sclerophylly: their correlations and ecological implications. New Phytologist, 121, 597 – 610.en_US
dc.identifier.citedreferenceCrane AJ ( 1985 ) Possible effects of rising CO 2 on climate. Plant, Cell and Environment, 8, 371 – 379.en_US
dc.identifier.citedreferenceDrake BG, Gonzalez-Meler MA ( 1996 ) More efficient plants: a consequence of rising atmospheric CO 2 ? Annual Review of Plant Physiology and Plant Molecular Biology, 48, 609 – 639.en_US
dc.identifier.citedreferenceDrake BG, Leadley PW, Arp WJ et al. ( 1989 ) An open top chamber for field studies of elevated atmospheric CO 2 concentration on saltmarsh vegetation. Functional Ecology, 3, 363 – 371.en_US
dc.identifier.citedreferenceEhleringer JR, Cerling TE, Dearing MD ( 2002 ) Atmospheric CO 2 as a global change driver influencing plant–animal interactions. Integrative and Comparative Biology, 42, 424 – 430.en_US
dc.identifier.citedreferenceGoverde M, Erhardt A, Niklaus PA ( 2002 ) In situ development of a satyrid butterfly on calcareous grassland exposed to elevated carbon dioxide. Ecology, 83, 1399 – 1411.en_US
dc.identifier.citedreferenceGoverde M, van der Heijden MGA, Wiemken A et al. ( 2000 ) Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore. Oecologia, 125, 362 – 369.en_US
dc.identifier.citedreferenceHartley SE, Jones CG, Couper GC et al. ( 2000 ) Biosynthesis of plant phenolic compounds in elevated atmospheric CO 2. Global Change Biology, 6, 497 – 506.en_US
dc.identifier.citedreferenceHendrix DL ( 1993 ) Rapid extraction and analysis of nonstructural carbohydrates in plant tissues. Crop Science, 33, 1306 – 1311.en_US
dc.identifier.citedreferenceKarowe DN, Siemens DS, Mitchell-Olds T ( 1997 ) Species-specific response of glucosinolate content to elevated atmospheric CO 2. Journal of Chemical Ecology, 23, 2569 – 2582.en_US
dc.identifier.citedreferenceKellog EA, Farnsworth EJ, Russo ET et al. ( 1999 ) Growth responses of C 4 grasses of contrasting origin to elevated CO 2. Annals of Botany, 84, 279 – 288.en_US
dc.identifier.citedreferenceLaetsch WM ( 1974 ) The C 4 syndrome: a structural analysis. Annual Review of Plant Physiology, 25, 27 – 52.en_US
dc.identifier.citedreferenceLatch GCM, Potter LR, Tyler BR ( 1987 ) Incidence of endophytes in seeds from collections of Lolium and Festuca species. Annals of Applied Biology, 111, 59 – 64.en_US
dc.identifier.citedreferenceLeCain D, Morgan JA ( 1998 ) Growth, gas exchange, leaf nitrogen and concentrations in NAD-ME and NADP-ME C 4 grasses grown in elevated CO 2. Physiologia Plantarum, 102, 297 – 306.en_US
dc.identifier.citedreferenceLincoln DE, Fajer ED, Johnson RH ( 1993 ) Plant–insect herbivore interactions in elevated CO 2 environments. Trends in Ecology and Evolution, 8, 64 – 68.en_US
dc.identifier.citedreferenceLindroth RL ( 1996 ) CO 2 -mediated changes in tree chemistry and tree-lepidopteran interactions. In: Carbon Dioxide and Terrestrial Ecosystems ( eds Koch GW, Mooney HA ), pp. 105 – 120. Academic Press, San Diego, CA.en_US
dc.identifier.citedreferenceMacAdam JW ( 2002 ) Secondary cell wall deposition causes radial growth of fibre cells in the zone of elongating tall fescue leaf blades. Annals of Botany, 89, 89 – 96.en_US
dc.identifier.citedreferenceMarks S, Lincoln DE ( 1996 ) Antiherbivore defense mutualism under elevated carbon dioxide levels: a fungal endophyte and grass. Environmental Entomology, 25, 618 – 623.en_US
dc.identifier.citedreferenceMattson WJ ( 1980 ) Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics, 11, 119 – 161.en_US
dc.identifier.citedreferenceMeier H, Reid JSG ( 1982 ) Reserve polysaccharides other than starch in higher plants. In: Encyclopedia of Plant Physiology. Plant Carbohydrates 1: Intracellular Carbohydrates ( eds Loewus RA, Tanner W ), pp. 418 – 461. Springer-Verlag, New York.en_US
dc.identifier.citedreferenceMilton K, Dintzis FR ( 1981 ) Nitrogen-to-protein conversion factors for tropical plant samples. Biotropica, 13, 177 – 181.en_US
dc.identifier.citedreferenceMonz CA, Hunt HW, Reeves FB et al. ( 1994 ) The response of mycorrhizal colonization to elevated CO 2 and climate change in Pascopyrum smithii and Bouteloua gracilis. Plant and Soil, 165, 75 – 80.en_US
dc.identifier.citedreferenceNie G, Hendrix DL, Webber AN et al. ( 1995 ) Increased accumulation of carbohydrates and decreased photosynthetic gene transcript levels in wheat grown at an elevated CO 2 concentration in the field. Plant Physiology, 108, 975 – 983.en_US
dc.identifier.citedreferenceOwensby CE, Ham JM, Knapp A et al. ( 1996 ) Ecosystem-level responses of tallgrass prairie to elevated CO 2. In: Carbon Dioxide and Terrestrial Ecosystems ( eds Koch GW, Mooney HA ), pp. 147 – 162. Academic Press, New York.en_US
dc.identifier.citedreferencePollock CJ, Cairns AJ ( 1991 ) Fructan metabolism in grasses and cereals. Annual Review of Plant Physiology, 42, 77 – 101.en_US
dc.identifier.citedreferencePoorter H ( 1993 ) Interspecific variation in the growth response of plants to an elevated ambient CO 2 concentration. Vegetatio, 104/105, 77 – 97.en_US
dc.identifier.citedreferencePoorter H, Roumet C, Campbell BD ( 1996 ) Interspecific variation in the growth responses of plants to elevated CO 2: a search for functional types. In: Biological Diversity in a CO 2 -Rich World. Physiological Ecology Series ( eds Korner C, Bazzaz FA ), pp. 375 – 412. Academic Press, San Diego, CA.en_US
dc.identifier.citedreferencePoorter H, van Berkel Y, Baxter R et al. ( 1997 ) The effect of elevated CO 2 on the chemical composition and construction costs of leaves of 27 C 3 species. Plant, Cell and Environment, 20, 472 – 482.en_US
dc.identifier.citedreferencePost WM, Peng T-H, Emanuel WR et al. ( 1990 ) The global carbon cycle. American Scientist, 78, 310 – 326.en_US
dc.identifier.citedreferenceSAS Institute ( 2000 ) The SAS system for Windows. Version 8e. SAS Institute, Cary, NC, USA.en_US
dc.identifier.citedreferenceScheirs J, De Bruyn L, Verhagen R ( 2001 ) A test of the C 3 –C 4 hypothesis with two grass miners. Ecology, 82, 410 – 421.en_US
dc.identifier.citedreferenceScriber JM ( 1977 ) Limiting effects of low leaf water content on the nitrogen utilization, energy budget and larval growth of Hyalophora cecropia (Lepidoptera: Saturniidae). Oecologia, 28, 269 – 287.en_US
dc.identifier.citedreferenceSmith D ( 1973 ) Influence of drying and storage conditions on nonstructural carbohydrate analysis of herbage tissue – a review. Journal of the British Grasslands Society, 28, 129 – 134.en_US
dc.identifier.citedreferenceSmith SD, Strain BR, Sharkey TD ( 1987 ) Effects of CO 2 enrichment on four Great Basin grasses. Functional Ecology, 1, 139 – 143.en_US
dc.identifier.citedreferenceSponheimer M, Robinson T, Roeder B et al. ( 2003 ) Digestion and passage rates of grass hays by llamas, alpacas, goats, rabbits, and horses. Small Ruminant Research, 48, 149 – 154.en_US
dc.identifier.citedreferenceTeeri JA, Stowe LG ( 1976 ) Climatic patterns and the distribution of C 4 grasses in North America. Oecologia, 23, 1 – 12.en_US
dc.identifier.citedreferenceThomas H ( 1978 ) Enzymes of nitrogen mobilization in detached leaves of Lolium temulentum during senescence. Planta, 142, 161 – 169.en_US
dc.identifier.citedreferenceVan Soest PJ ( 1994 ) Nutritional Ecology of the Ruminant. Cornell University Press, Ithaca, NY.en_US
dc.identifier.citedreferenceVan Soest PJ, Robertson JB, Lewis BA ( 1991 ) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583 – 3597.en_US
dc.identifier.citedreferenceVolk M, Niklaus PA, KÖrner C ( 2000 ) Soil moisture effects determine CO 2 responses of grassland species. Oecologia, 125, 380 – 388.en_US
dc.identifier.citedreferenceWand SJE, Midgley GF, Jones MH, Curtis PS ( 1999 ) Responses of wild C 4 and C 3 grass (Poaceae) species to elevated atmospheric CO 2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biology, 5, 723 – 741.en_US
dc.identifier.citedreferenceWatling JR, Press MC, Quick WP ( 2000 ) Elevated CO 2 induces biochemical and ultrastructural changes in leaves of the cereal sorghum. Plant Physiology, 123, 1143 – 1152.en_US
dc.identifier.citedreferenceWilkinson L ( 2000 ) SYSTAT: The system for statistics. SYSTAT, Inc., Evanston, IL.en_US
dc.identifier.citedreferenceWilliams RE, Allred BW, DeNio RM et al. ( 1968 ) Conservation, development, and use of the world's rangelands. Journal of Range Management, 21, 355 – 360.en_US
dc.identifier.citedreferenceWilson JR, Brown RH, Windham WR ( 1983 ) Influence of leaf anatomy on the dry matter digestibility of C 3, C 4, and C 3 /C 4 intermediate types of Panicum species. Crop Science, 23, 141 – 146.en_US
dc.identifier.citedreferenceWolf DD, Carson EW ( 1973 ) Respiration during drying of alfalfa herbage. Crop Science, 13, 660 – 662.en_US
dc.identifier.citedreferenceWright W, Illius AW ( 1995 ) A comparative study of the fracture properties of five grasses. Functional Ecology, 9, 269 – 278.en_US
dc.identifier.citedreferenceYoung Owl M, Batzli GO ( 1998 ) The integrated processing response of voles to fibre content of natural diets. Functional Ecology, 12, 4 – 13.en_US
dc.identifier.citedreferenceZangerl AR, Bazzaz FA ( 1984 ) The response of plants to elevated CO 2. II. Competitive interactions among annual plants under varying light and nutrients. Oecologia, 62, 412 – 417.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.