Show simple item record

Dynamic Modeling of In-Use Cement Stocks in the United States

dc.contributor.authorKapur, Amiten_US
dc.contributor.authorKeoleian, Gregory A.en_US
dc.contributor.authorKendall, Alissaen_US
dc.contributor.authorKesler, Stephen E.en_US
dc.date.accessioned2010-06-01T19:02:41Z
dc.date.available2010-06-01T19:02:41Z
dc.date.issued2008-08en_US
dc.identifier.citationKapur, Amit; Keoleian, Gregory; Kendall, Alissa; Kesler, Stephen E. (2008). "Dynamic Modeling of In-Use Cement Stocks in the United States." Journal of Industrial Ecology 12(4): 539-556. <http://hdl.handle.net/2027.42/72233>en_US
dc.identifier.issn1088-1980en_US
dc.identifier.issn1530-9290en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72233
dc.description.abstractA dynamic substance-flow model is developed to characterize the stocks and flows of cement utilized during the 20th century in the United States, using the generic cement life cycle as a systems boundary. The motivation for estimating historical inventories of cement stocks and flows is to provide accurate estimates of contemporary cement in-use stocks in U.S. infrastructure and future discards to relevant stakeholders in U.S. infrastructure, such as the federal and state highway administrators, departments of transportation, public and private utilities, and the construction and cement industries. Such information will assist in planning future rehabilitation projects and better life cycle management of infrastructure systems. In the present policy environment of climate negotiations, estimates of in-use cement infrastructure can provide insights about to what extent built environment can act as a carbon sink over its lifetime. The rate of addition of new stock, its composition, and the repair of existing stock are key determinants of infrastructure sustainability. Based upon a probability of failure approach, a dynamic stock and flow model was developed utilizing three statistical lifetime distributions—Weibull, gamma, and lognormal—for each cement end-use. The model-derived estimate of the “in-use” cement stocks in the United States is in the range of 4.2 to 4.4 billion metric tons (gigatonnes, Gt). This indicates that 82% to 87% of cement utilized during the last century is still in use. On a per capita basis, this is equivalent to 14.3 to 15.0 tonnes of in-use cement stock per person. The in-use cement stock per capita has doubled over the last 50 years, although the rate of growth has slowed.en_US
dc.format.extent144820 bytes
dc.format.extent275080 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights©2008 Yale Universityen_US
dc.subject.otherIndustrial Ecologyen_US
dc.subject.otherInfrastructureen_US
dc.subject.otherLifetime Distributionen_US
dc.subject.otherMaterial Flow Analysis (MFA)en_US
dc.subject.otherProbability of Failureen_US
dc.subject.otherSubstance Flow Analysisen_US
dc.titleDynamic Modeling of In-Use Cement Stocks in the United Statesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, in Ann Arbor, Michigan, when this study was conducteden_US
dc.contributor.affiliationumCenter for Sustainable Systems at the University of Michiganen_US
dc.contributor.affiliationumDepartment of Geological Sciences, University of Michiganen_US
dc.contributor.affiliationotherDepartment of Civil and Environmental Engineering, University of California at Davisen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72233/1/JIEC_055_sm_SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72233/2/j.1530-9290.2008.00055.x.pdf
dc.identifier.doi10.1111/j.1530-9290.2008.00055.xen_US
dc.identifier.sourceJournal of Industrial Ecologyen_US
dc.identifier.citedreferenceAlsop, P. A., H. Chen, A. L. Chin-Fatt, A. J. Jackura, M. I. McCabe, and H. H. Tseng. 2005. Cement plant operations handbook for dry process plants. Surrey, UK: Tradeship Publications.en_US
dc.identifier.citedreferenceASCE (American Society of Civil Engineers). 2001. Renewing America's infrastructure: A citizen's guide. Washington, DC: ASCE.en_US
dc.identifier.citedreferenceASCE. 2005. Report card for America's infrastructure. http://www.asce.org/reportcard/2005/index.cfm. Accessed April 2005.en_US
dc.identifier.citedreferenceBaccini, P. and P. H. Brunner. 1991. Metabolism of the anthroposphere. Berlin: Springer-Verlag.en_US
dc.identifier.citedreferenceBEA (Bureau of Economic Analysis). 2003. Fixed assets and consumer durables in the United States, 1925–97. Washington, DC: BEA.en_US
dc.identifier.citedreferenceBGS (British Geological Survey). 2004. Cement raw materials. Keyworth, UK: BGS.en_US
dc.identifier.citedreferenceBolen, W. P. 2001. Sand and gravel, construction—2001. United States Geological Survey minerals yearbook 2001. Washington, DC: United States Geological Survey.en_US
dc.identifier.citedreferenceBrattebØ, H., H. Bergsdad, R. Bohne, and D. MÜller. 2005. IE tools for built environment: Part I. MFA dynamics of the Norwegian dwelling stocks. http://www.indecol.ntnu.no/indecolwebnew/publications/newsletter/webnews/documents/brattebo_etal_stockholm.pdf. Accessed March 2006.en_US
dc.identifier.citedreferenceBTS (Bureau of Transportation Statistics). 2005. Highway performance monitoring system—core data. http://www.bts.gov. Accessed April 2005.en_US
dc.identifier.citedreferenceCohen, J. R. 2001. Abandoned housing: Exploring lessons from Baltimore. Housing Policy Debate 12 ( 3 ): 415 – 448.en_US
dc.identifier.citedreferenceDiPietro, G. 2004. Personal communication with G. DiPietro, Municipal Waste Reduction Branch, Municipal and Industrial Solid Waste Division, Washington, DC, 18 November 2004.en_US
dc.identifier.citedreferenceDuda, W. H. 1995. Cement data book. Third edition, Vol. 1. Weisbaden, Germany: French and European Publications.en_US
dc.identifier.citedreferenceElshkaki, A., E. van der Voet, V. Timmermans, and M. Van Holderbeke. 2005. Dynamic stock modelling: A method for the identification and estimation of future waste streams and emissions based on past production and product stock characteristics. Energy 30 ( 8 ): 1353 – 1363.en_US
dc.identifier.citedreferenceFlores, M. T. 2004. Personal communication with M. T. Flores, LEED® 2.0 Accredited Professional, Environmental Program Coordinator, The Associated General Contractors of America, Alexandria, VA, 15 December 2004.en_US
dc.identifier.citedreferenceGajda J. and F. MacGregor Miller. 2000. Concrete as a sink for atmospheric carbon dioxide: A literature review and estimation of CO 2 absorption by Portland Cement concrete. Skokie, IL: Portland Cement Associationen_US
dc.identifier.citedreferenceGraedel, T. E. and R. Klee. 2002. Getting serious about sustainability. Environmental Science and Technology 36 ( 4 ): 526 – 529.en_US
dc.identifier.citedreferenceGraedel, T. E., M. Bertram, K. Fuse, R. B. Gordon, R. Lifset, H. Rechberger, and S. Spatari. 2002. The contemporary European copper cycle: The characterization of technological copper cycles. Ecological Economics 42 ( 1–2 ): 9 – 26.en_US
dc.identifier.citedreferenceGraedel, T. E., D. van Beers, M. Bertram, K. Fuse, R. B. Gordon, A. Gritsinin A. Kapur, R. J. Klee, R. J. Lifset, L. Memon, H. Rechberger, S. Spatari, and D. Vexler. 2004. Multilevel cycle of anthropogenic copper. Environmental Science and Technology 38 ( 4 ): 1242 – 1252.en_US
dc.identifier.citedreferenceGraedel, T. E., D. van Beers, M. Bertram, K. Fuse, R. B. Gordon, A. Gritsinin, E. M. Harper, A. Kapur, R. J. Klee, R. Lifset, L. Memon, and S. Spatari. 2005. The multilevel cycle of anthropogenic zinc. Journal of Industrial Ecology 9 ( 3 ): 67 – 90.en_US
dc.identifier.citedreferenceGuinÉe, J. B., J. C. J. M. van der Bergh, J. Boelens, P. J. Fraanje, G. Huppes, P. P. A. A. H. Kandelaars, T. M. Lexmond, S. W. Moolenaar, A. A. Olsthoorn, H. A. Udo de Haes, E. Verkuijlen, and E. van der Voet. 1999. Evaluation of risks of metal flows and accumulation in economy and environment. Ecological Economics 30 ( 1 ): 47 – 65.en_US
dc.identifier.citedreferenceHarrington, K. J. 2004. Personal communication with K. J. Harrington, FHWA Asphalt Pavement Engineer, HIPT, US Department of Transportation, Washington, D.C., 26 November 2004.en_US
dc.identifier.citedreferenceHekkert, M. P., L. A. J. Joosten, and E. Worrell. 2000. Analysis of the paper and wood flow in the Netherlands. Resources, Conservation and Recycling 30 ( 1 ): 29 – 48.en_US
dc.identifier.citedreferenceHorvath, A. 2004. Construction materials and the environment. Annual Review of Environment and Resources 29: 181 – 204.en_US
dc.identifier.citedreferenceInterfire. 2005. IAAI/USFA vacant and abandoned buildings community group presentation outline. http://www.interfire.org/features/community_talk.asp. Accessed April 2005.en_US
dc.identifier.citedreferenceJCHS (Joint Center for Housing Studies). 2001. Remodeling homes for changing households. Cambridge, MA: JCHS.en_US
dc.identifier.citedreferenceJoosten, L. A. J., M. P. Hekkert, and E. Worrell. 2000. Assessment of the plastic flows in the Netherlands using STREAMS. Resources, Conservation and Recycling 30 ( 2 ): 135 – 161.en_US
dc.identifier.citedreferenceKapur, A. and T. E. Graedel. 2004. Copper mines above and below the ground. Environmental Science and Technology 40 ( 10 ): 3135 – 3141.en_US
dc.identifier.citedreferenceKelly, T. 1998. Crushed cement concrete substitution for construction aggregates—A material flow analysis. U.S. Geological Survey Circular 1177. Washington, DC: U.S. Geological Survey.en_US
dc.identifier.citedreferenceKleijn, R., R. Huele, and E. van der Voet. 2000. Dynamic substance flow analysis: The delaying mechanism of stocks, with the case of PVC in Sweden. Ecological Economics 32 ( 2 ): 241 – 254.en_US
dc.identifier.citedreferenceKomastu, Y., Y. Kato, T. Yoshida, and T. Yashiro. 1992. Report of an investigation of the lifetime distribution of Japanese houses at 1987. Journal of Architecture, Planning, and Environmental Engineering/Transactions of Architectural Institute of Japan 439: 101 – 110.en_US
dc.identifier.citedreferenceMelo, M. T. 1999. Statistical analysis of metal scrap generation: The case of aluminum in Germany. Resources, Conservation and Recycling 26 ( 2 ): 91 – 113.en_US
dc.identifier.citedreferenceMichaelis, P. and T. Jackson. 2000a. Material and energy flow through the UK iron and steel sector Part 1: 1954–1994. Resources, Conservation and Recycling 29 ( 1–2 ): 131 – 156.en_US
dc.identifier.citedreferenceMichaelis, P. and T. Jackson. 2000b. Material and energy flow through the UK iron and steel sector Part 2: 1994–2019. Resources, Conservation and Recycling 29 ( 3 ): 209 – 230.en_US
dc.identifier.citedreferenceMÜller, D. B. 2006. Stock dynamics for forecasting material flows—Case study for housing in the Netherlands. Ecological Economics 56 ( 1 ): 142 – 156.en_US
dc.identifier.citedreferenceNowak, A. S. and K. R. Collins. 2000. Reliability of structures. First edition. New York: McGraw-Hill Science/Engineering/Math.en_US
dc.identifier.citedreferenceOECD (Organization for Economic Cooperation and Development). 2001. Measuring capital: OECD manual. Measurement of capital stocks, consumption of fixed capital and capital services. Paris: OECD.en_US
dc.identifier.citedreferencePade, C. and M. Guimaraes. 2007. The CO 2 uptake of concrete in a 100 year perspective. Cement and Concrete Research 37 ( 9 ): 1348 – 1356.en_US
dc.identifier.citedreferencePalm, V. and C. Ostlund. 1996. Lead and zinc flows from the technosphere to biosphere in a city region. Science of the Total Environment 192 ( 1 ): 95 – 109.en_US
dc.identifier.citedreferencePatel, M. K., E. Jochem, P. Radgen, and E. Worrell. 1998. Plastic streams in Germany—an analysis of production, consumption and waste generation. Resources, Conservation and Recycling 24 ( 3–4 ): 191 – 125.en_US
dc.identifier.citedreferencePortland Cement Association. 2004. Cement shortage assessment. PCA Monitor.en_US
dc.identifier.citedreferencePortland Cement Association. 2005. http://www.cement.org/Cement%20Shortage%20Flash%20Rpt.pdf. Accessed October 2004.en_US
dc.identifier.citedreferenceSchrank, D. and T. Lomax. 2004. The 2004 urban mobility report. Texas Transportation Institute, Texas A&M University System, http://mobility.tamu.edu. Accessed April 2005.en_US
dc.identifier.citedreferenceSÖrme, L., B. BergbÄck, and U. Lohm. 2001. Century perspective of heavy metal use in urban areas. Water, Air, and Soil Pollution Focus 1 ( 3–4 ): 197 – 211.en_US
dc.identifier.citedreferenceSpatari, S., M. Bertram, K. Fuse, T. E. Graedel, and H. Rechberger. 2002. The contemporary European copper cycle: One-year stocks and flows. Ecological Economics 42 ( 1–2 ): 27 – 42.en_US
dc.identifier.citedreferenceSpatari, S., M. Bertram, R. B. Gordon, K. Henderson, and T. E. Graedel. 2005. Twentieth century copper flows in North America: A dynamic analysis. Ecological Economics 54 ( 1 ): 37 – 51.en_US
dc.identifier.citedreferenceTepordei, V. V. 2001. Crushed stone—2001. United States Geological Survey Minerals Yearbook 2001. Washington, DC: U.S. Geological Survey.en_US
dc.identifier.citedreferenceTurley, W. 2004. Personal communication with W. Turley, Executive Director, Construction Materials Recycling Association, Assoc. Publisher, Construction & Demolition Recycling, Eola, IL, 17 November 2004.en_US
dc.identifier.citedreferenceUSCB (U.S. Census Bureau). 2005a. Estimates of housing units. http://www.census.gov/popest/housing/. Accessed April 2005.en_US
dc.identifier.citedreferenceUSCB. 2005b. Population estimates. http://www.census.gov/popest/archives/1990s/. Accessed May 2005.en_US
dc.identifier.citedreferenceUSCB. 2005c. Construction value put in place. http://www.census.gov/const/www/totpage.html. Accessed May 2005.en_US
dc.identifier.citedreferenceUSDOT (U.S. Department of Transportation). 2002. Status of nation's highways, bridges, and transit. Washington, DC: USDOT.en_US
dc.identifier.citedreferenceUSEPA (U.S. Environmental Protection Agency). 1998. Characterization of building-related construction and demolition debris in United States. Washington, DC: USEPA.en_US
dc.identifier.citedreferenceUSGS (U.S. Geological Survey). 2003. Crushed stone—2003. United States Geological Survey Minerals Yearbook 2003. Washington, DC: USGS.en_US
dc.identifier.citedreferenceVan der Schans, P. W. 2005. Increasing material prices gouge construction industry. Construction Executive January 2005: 26 – 29.en_US
dc.identifier.citedreferenceVan Noortwijk, J. M. and H. E. Klatter. 2004. The use of lifetime distributions in bridge maintenance and replacement modeling. Computers and Structures 82: 1091 – 1099.en_US
dc.identifier.citedreferenceVan Oss, H. G. 2006. Personal communication with H. G. van Oss, Cement Commodity Specialist at US Geological Survey, Reston, VA, 14 September 2006.en_US
dc.identifier.citedreferenceVan Oss, H. G. and T. Kelly. 2005. Cement statistics: table on U.S. Geological Survey Cement Commodity webpage. http://minerals.usgs.gov/minerals/pubs/of01-006/cement.xls. Accessed March 2006.en_US
dc.identifier.citedreferenceVan Oss, H. G. and A. C. Padovani. 2002. Cement manufacture and the environment, Part I: Chemistry and technology. Journal of Industrial Ecology 6 ( 1 ): 89 – 105.en_US
dc.identifier.citedreferenceVan Oss, H. G. and A. C. Padovani. 2003. Cement manufacture and the environment, Part II: Environmental challenges and opportunities. Journal of Industrial Ecology 7 ( 1 ): 93 – 126.en_US
dc.identifier.citedreferenceWagner, L. A. 2002. Materials in the economy—material flows, scarcity and the environment. U.S. Geological Survey Circular 1221. Washington, DC: U.S. Geological Survey.en_US
dc.identifier.citedreferenceWorld Bank. 2005. World development indicators. http://devdata.worldbank.org/dataonline/. Accessed May 2005.en_US
dc.identifier.citedreferenceZeltner, C. B., H. P. Bader, R. Scheidegger, and P. Baccini. 1999. Sustainable metal management exemplified by copper in the USA. Regional Environmental Change 1 ( 1 ): 31 – 46.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.